
RESEARCH AND DEVELOPMENT EFFECTIVENESS PROGRAM 1969 (RDE 69)

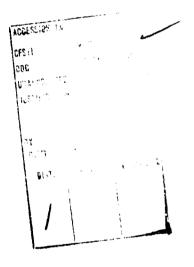
A MANAGEMENT TOOL TO ALLOCATE THE BUDGET OF A RESEARCH ORGANIZATION

ROBERT R. JURICK
JAMES F. BITTLE, II

TECHNICAL REPORT ASD-TR-68-23

JULY 1968

This document has been approved for public release and sale; its distribution is unlimited.


DEPUTY FOR ENGINEERING
AERONAUTICAL SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

CLEARIN THOUGHT

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This document has been approved for public release and sale; its distribution is unlimited.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

RESEARCH AND DEVELOPMENT EFFECTIVENESS PROGRAM 1969 (RDE 69)

A MANAGEMENT TOOL TO ALLOCATE THE BUDGET OF A RESEARCH ORGANIZATION

ROBERT R. JURICK
JAMES F. BITTLE, II

This document has been approved for public release and sale; its distribution is unlimited.

FOREWORD

This report has been prepared by Robert R. Jurick and James F. Bittle, II of the Digital Computation Division, Directorate of Computation Services, Deputy for Engineering, Wright-Patterson Air Force Base, Ohio. It consists of information necessary to use the RDE69 computer program written for the Plans group of the Air Force Flight Dynamics Laboratory at Wright-Patterson Air Force Base, Ohio. This group, charged with development and implementation of the program, is comprised of Mr. A. B. Nutt, Mr. J. F. Schmidt, and Lt M. D. Rusk. The RDE69 programming effort began in August 1967. This report was submitted by the authors on April 19, 1968.

This technical report has been reviewed and is approved.

CLEM GRABNER, JR.

Digital Computation Division

Directorate of Computation Services

ABSTRACT

A formulation and digital computer program is presented as a management tool to allocate the budget of a research organization. It has been designed to meet the specific needs of the Air Force Flight Dynamics Laboratory at Wright-Patterson Air Force Base, Ohio, but instructions are included to enall'e the program to be used by any research organizations. The value of a specific research task is defined and an optimization technique is employed to maximize the total value achieved for a given yearly budget constraint of the organization. A maximum of 250 research tasks may be considered. The program performs a yearly optimization for up to five years. It generates a number of reports which indicate the progress of each research task during the given time period and the effect of this progress on other organizational entities.

TABLE OF CONTENTS

SECTION			PAGE
I	INTRO	DDUCTION	1
П	MATH	EMATICAL FORMULATION	4
	1.	Definitions of Terms	4
	2.	Problem Description	5
	3.	System Flow Diagram	9
	4.	Description of Routines	12
		a. EDIT	12
		b. EXEC	14
		c. INIT	14
		d. BJP	15
		e. SMLP	15
		f. FNAL	21
		g. FACT	22
	5,	Applications and Limitations	22
Ш	INPU	T-OUTPUT DESCRIPTION	26
	1.	Description of Input and the Input Form	26
	2.		33
	3.	Examples of Output Reports	34
IV	PROG	RAMMING GUIDE	47
	1.	Running the program	47
	2.	Programming Notes	47
	3.	Listing of All Routines	52
APPEN	DIX I	INSTRUCTIONS SENT OUT BY	
		AFFDL TO TASK ENGINEERS	81
APPEN	DIX II	SAMPLE INPUT DATA FOR SPECIFIC TASK	121

ILLUSTRATIONS

FIGURE		PAGE
1.	RDE Logic Flow Diagram	7
2.	Cost Versus Confidence Level Graph	17
3.	Timeliness Function Graph	19
4.	Sample Input Form	32
5.	Sample Input Data Listing	34
6.	Sample System Support Versus Task Matrix	35
7.	Sample Adjusted System Support Versus Task Matrix	36
8.	Sample Technological Objective Support Versus Task Matrix	37
9.	Sample Limited War Support Versus Task Matrix	39
10,	Sample 1498 Associated Work Units List	40
11.	Sample Priority List	41
12.	Sample Annual Report	43
13.	Sample Final Report	44
14.	Sample System Profile	45
15.	Sample Facility Utilization Report	46
16.	EDIT Deck Setup	48
17	RDF69 Deck Satur	49

VARIABLE NAMES AND SYMBOLS

VARIABLE	FORTRAN NAME	DESCRIPTION
$\mathbf{b_{j}}$	BJ	Contribution of task to system j
b' j	ВР	Adjusted b. from equations (2a) and (2b)
- b _j	CAVG	Average contribution of all tasks to system j
$\mathbf{B_k}$	BPSUM	Total system contribution for a given task
c _j	CJ	AFFDL designated weight of system j
C _k	COST	Cost of resource level k for a given task including converted engineer costs
CENG	CENG	Cost of employing one engineer for one year
CL	CLY	Confidence level at end of preceding year
CL' _k	CLNU	Confidence level attainable if RL_k funds are used
CLII	CLH	Confidence level array for years preceding first year of optimization
$\operatorname{cs}_{\mathrm{k}}$	CS	Contract and support funds used at RLk
d	AR	Ranking factor in value coefficient equation
$^{\mathrm{D}}{}_{\mathrm{n}}$	DN	Number of tasks in division n
EC _k	EC	Contract engineers used at RLk
ELk	EI	In-house engineers used at RL
$g_{\mathbf{j}}$	ТG	Contribution of task to tech objective j
hj	нк	AFFDL designated weight of tech objective j
R	IR	Rank of task within its division
RL	NRL	Resource level k for a given task

VARIABLE NAMES AND SYMBOLS (CONT'D)

VARIABLE	FORTRAN NAME	DESCRIPTION
RDE _k	OBJ	Value "oefficient for RLk
^t j	твј, тск	Expected time-to-completion for systems or tech objective as determined by AFSC
$\mathbf{r_k}$	TGSUM	Total tech objective contribution for a given task
$T_{k,j}$	TIM	Timeliness factor of value coefficient equation
y _k	Т8	Time in years for task to reach a confidence level of .8

SECTION I

INTRODUCTION

The Research and Development Effectiveness program (RDE) is designed to optimize the selection of tasks to be funded in a scientifically oriented organization which is constrained to a limited budget. It has been developed to meet the needs of the Air Force Flight Dynamics Laboratory (AFFDL) at Wright-Patterson AFB, Ohio; however, this documentation has been prepared to satisfy the interest shown by private industry and other Air Force agencies.

The problem of objectively allocating applied research resources within a large laboratory has basically two components: (1) the estimation of the potential value of an advancement in the state of engineering technology; (2) the alternative ways and costs associated in making this advancement. The research manager's function is to continually make choices among a large number of ways to spend resources. He must decide (1) what projects and tasks should be funded; (2) what rate of funding should apply; (3) whether the effort should be in-house or contract. Prior to the use of this program the allocation decisions were often the result of a loose interaction between requirements based on need, priorities as assigned by higher headquarters, and notions of costs and diminishing returns based on experience.

One often-used method of allocating resources is to list the possible projects in order of priority and then to fund each project successively until no more resources are left. This method often results in low cost projects of relatively low priority being ignored. Such a method has also another fundamental weakness in that it is very difficult to say just what level of funding is enough for any particular project. Fortunately it is possible to devise criteria for task selection which incorporate measures of both value and cost. Often it is not easy to develop these measures of cost and benefit objectively. Furthermore, it is humanly impossible for one individual to perform simultaneous evaluations of a multitude of competing projects. And a nonsimultaneous comparison, for example, may result in the allocation of resources on something very close to a first come, first served basis.

In light of the above problem, in 1962 the Chief of the Aeromechanics Directorate, Aeronautical Systems Division, assigned Capt. Robert H. Rea, in the Plans Office, to look into the possible ways that allocations of resources might be accomplished. During the course of his studies and investigation, he obtained the assistance of Lt. Thomas W. Synnott, an instructor in economics in the Department of Systems Management, Air Force Institute of Technology. Lt. Synnott suggested the use of Mathematical Programming as used in Capital Budgeting Problems, as described in a Doctoral Dissertation by H. Martin Weingartner. A linear programming approach was applied, a mathematical model was developed, and a trial run was made in 1964 - 65 for the FY 65 program. Each subsequent year improvements and changes have been made to the model, input data, and output formats. Beginning in 1965 (RDE66 program), the M40 linear programming routine was used in the colution of the allocation problem. In 1968 (RDE69 program) the linear program was abandoned in favor of a simplified program because, due to severe budgetary limitations, a single critical variable expressed in dollars was found to be adequate. The ratio of objective function (or merit factor) divided by cost in dollars is used as a ranking function.

The above, regardless of solution method employed, carries the basic objective of providing a decision aid for the Laboratory Director in utilizing the resources of the Air Force Laboratory in an effective manner.

The remainder of this report is composed of three parts; mathematical formulation, description of input and output, and a programming guide. Section II is intended to familiarize the user with the mathematical and logical structure of the program. A complete understanding of this section is necessary before the program can be expected to produce meaningful results. In addition, a thorough knowledge of the formulation is required before changes to the code can be attempted.

Section III describes in detail the preparation of the input data cards.

Finally, Section IV contains complete program documentation, and is supplied so that the user may easily tailor the program to his specific needs. In order that the program be essentially machine independent, the bulk of the code is written in FORTRAN.

Although this report is intended to be primarily a programmer-user manual, Appendix I is included to show how the input information is obtained from the project engineers. "Format I," which the engineer fills out, is then translated to AFFDL Form 15 which is the computer input form. Appendix II contains a sample FORMAT I for task 134702. This task is then used as the example task for all reports.

SECTION II MATHEMATICAL FORMULATION

1. DEFINITIONS OF TERMS

- 1498 WORK UNIT An individual effort within a task.
- CONFIDENCE LEVEL A measure of the progress of a task. Its range is from .2 to .8 with the effort necessary to achieve each even-tenth being defined by the task engineer.
- DIVISION The largest sub-organization of the Flight Dynamics Laboratory.

 The five divisions of AFFDL are:
 - (1) Structures
 - (2) Flight Mechanics
 - (3) Flight Control
 - (4) Vehicle Dynamics
 - (5) Vehicle Equipment
- FACILITY A test or support facility such as a wind tunnel or digital computer.
- PROJECT A group of tasks that cover a given technical area within a technical domain (division).
- RESOURCE LEVEL A description of the funding level of a task. A task is funded at resource level one if it receives its requested contract and support funds. A task is funded at resource level two if it receives the contract and support funds associated with double engineering manpower.
- SYSTEM An AFSC approved system such as anti-ballistic missile or AMSA.
- TASK A subdivision of a project. It is the basic funded element of AFFDL.
- TECHNOLOGICAL OBJECTIVE An approved goal of a division such as better instrumentation or improved reliability for a given function.

• VALUE COEFFICIENT - A number associated with each resource level of each task. It represents the tasks contribution to the overall effectiveness of AFFDL at a given resource level.

2. PROBLEM DESCRIPTION

The management problem of obtaining maximum production for a given capital outlay becomes more complicated when the product is as intangible as technology. How is maximum technology output measured? How can the progress of one scientific effort be predicted when it is dependent upon the progress of many other scientific efforts? What is a basic unit for measuring technology?

The organizational structure of AFFDL satisfies the requirement for a set of basic technology activities. AFFDL is composed of five divisions with each division responsible for several exploratory development projects, each of which is subdivided into a set of tasks. The task is the smallest documented effort element of AFFDL that receives a defined budget and, therefore, it becomes the basic element of the optimization problem. The input to any task is dollars and manpower, and the cutput is the value of the attainment of its defined technological objective in a timely manner.

The value associated with a given task at a given time is dependent upon its support of officially defined Air Force Systems Command (AFSC) proposed systems or subsystems and technological objectives. The value of a task is also dependent upon the present state-of-the-art in its technical area and its predicted rate of progress. The total value of the AFFDL program is the sum of the values of its individual tasks. Because the budget is limited, it must be divided among the tasks in such a way as to maximize the total value of the AFFDL program.

The cost-effectiveness of a task is defined as the ratio of value received to money spent. Three choices of funding are possible for each task; (1) funds requested by task engineers, (2) funds necessary to perform the task with twice the requested manpower, and (3) no funds. Choices 1 and 2 are called resource

levels 1 and 2, respectively. The optimal allocation of funds is determined by first choosing the most cost-effective resource level for each task, then ranking all tasks according to cost-effectiveness, and, finally, funding tasks in order of decreasing cost-effectiveness until the budget is expended. This process is continued for five years with the state-of-the-art of each task at the beginning of each year depending upon the funding level for the preceding year. This process is shown in Figure 1.

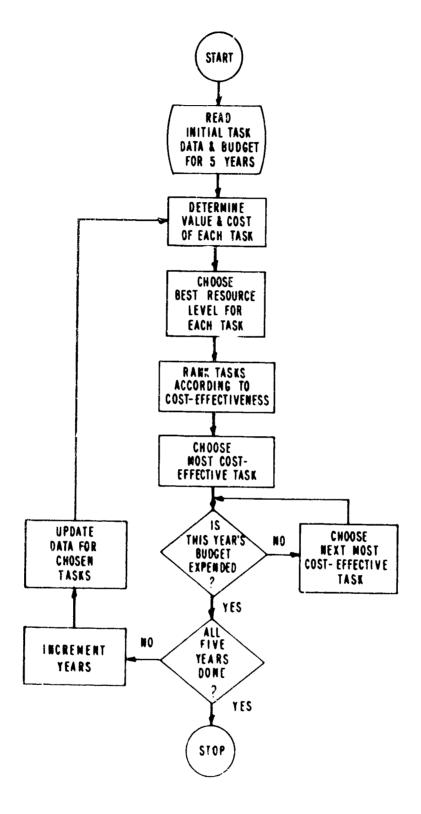
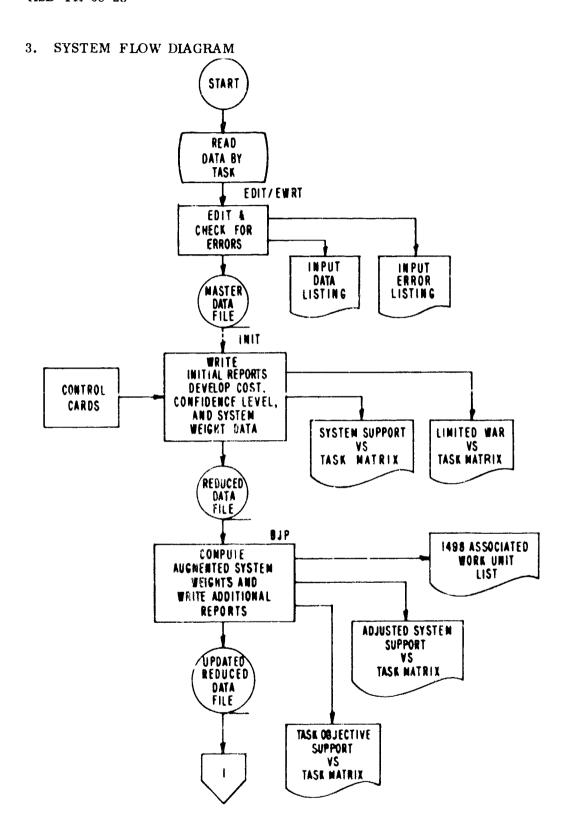
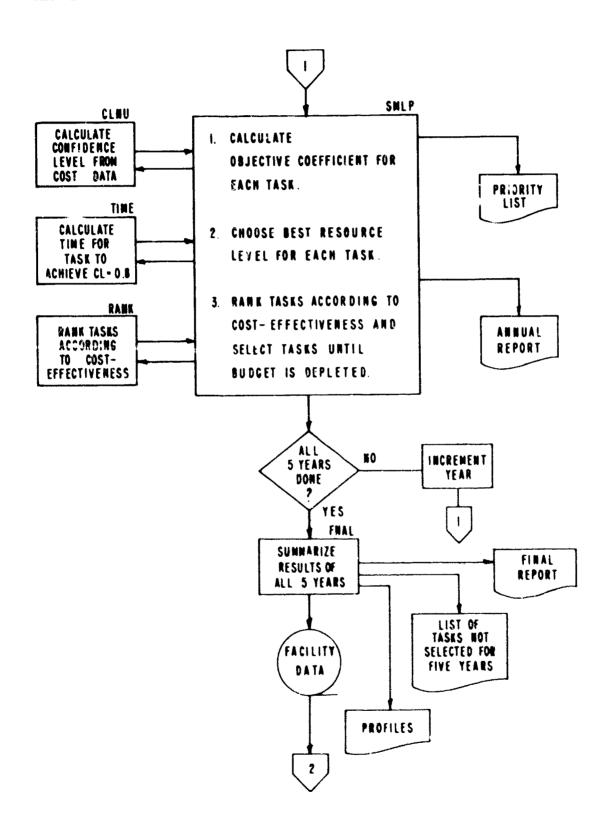
The following reports are generated by the program:

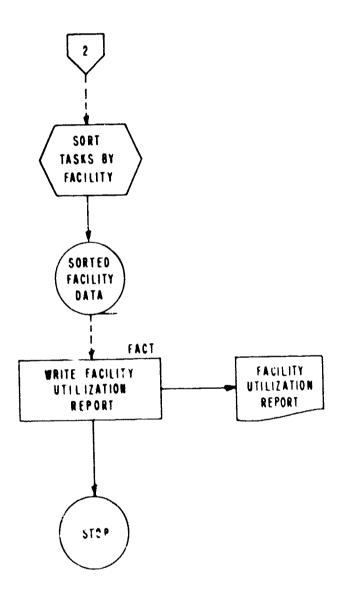
- Input data listing
- Input error listing
- System support versus task matrix
- Adjusted system support versus task matrix
- Technological objective versus task matrix
- Limited war support versus task matrix
- 1498 associated work units, listed by task
- Cost-effectiveness ranking (Priority List) for each year
- Project summary for each year (Annual Report)
- Five year project summary (Final Report)
- List of tasks not selected for five years
- Technological objective and system support profiles
- Facility utilization report

Examples of the reports are presented in Section III.

The first seven reports are written prior to the optimization phase and therefore are not dependent upon the results of the task funding procedure. The limited war data and the 1408 associated work units are not used in calculations within the program. The facilities used by a given task are neglected in determining its cost-effectiveness. The facility utilization report is used as an aid in predicting the facility requirements generated by the optimal selection of the tasks.

The term "optimal selection" usually signifies a linear programming approach to solving the budget allocation problem. This problem can indeed be structured as a linear programming problem with the simplication, however,


Figure 1. RDE Logic Flow Diagram

of having only one constraint, money. The existence of only one constraint eliminates the need for the commonly used Simplex algorithm and allows selections to be made on the criteria of highest ratio of objective coefficient (value) to row coefficient (cost).

Earlier versions of this program did employ the Simplex algorithm to solve the problem because exploratory development laboratory manpower was considered a constraint. This constraint, however, has been eliminated because of the realistic assumption that, if a manpower limit has been met before the laboratory's budget has been expended, the surplus funds can be used to employ more personnel.

4. DESCRIPTION OF ROUTINES

a. EDIT Routine

This routine reads in the following data for each task:

- Division number
- Project number
- Task number
- Subtask number
- Task engineer's name, office symbol, and telephone extension
- Project engineer's name
- Limited war support data including degree of support to limited war, special air warfare, interdiction, close air support, and logistics.
- Ranking of task within the division
- Task title
- Confidence levels achieved during preceding four years
- Contract and support funds used during preceding four years
- Contract and support funds requested for present year for both resource levels
- Contract engineers and in-house engineers requested for present year for both resource levels
- Identification number of each technological objective supported by this task
 and the percent of the total task effort that directly affects the completion of
 that technological objective
- Identification number of each system supported by this task and the percent of the total task effort that directly affects the progress of that system
- 1498 associated work units
- Amount of contract and support funds and engineering manpower necessary to achieve each confidence level
- Identification number of each facility used to achieve each confidence level and the . Squired number of occupancy bours

Most of this data is not operated upon in EDIT since the primary purpose of this routine is to eliminate data input errors. In addition to making several sequence checks to assure that all the data for each task is in its proper order, the following error checks are made:

- Division number too large
- Division ranking exceeds number of tasks within the division (This requires that the number of tasks per division be available as part of the program)
- Confidence level less than 2 or greater than .8
- Illegal system identification number
- System support greater than 100%
- Illegal technological objective identificatin number
- Technological objective support greater than 100 o
- Total engineers less than .3 for resource level one
- Total engineers for resource level two greater than double the total engineers for resource level one
- Total engineers for resource level two les n total engineers for resource level one
- Illegal facility code (This requires that a list of all facility codes be available as part of the program)
- Zero occupancy hours needed for a given facility
- Non-zero occupancy hours associated with no facility
- Confidence level data not given in steps of . 1

Manipulation of the data only occurs when the confidence level of a task for 1968 is not an even tenth. The confidence level calculating routine CLNU requires the cost to go from one even tenth to the next largest even tenth. Therefore, in the case of a task not starting at an even tenth, the given data must be extrapolated in the following manner.

Let CLH(4) be the non-even tenth confidence level for 1968 and CAS be the contract plus support funds needed to achieve the next largest even-tenth confidence level CLA. Letting $\begin{bmatrix} x \end{bmatrix}$ represent the largest integer $\leq x$, CLA is

equal to .1 $\left[10. \cdot \text{CLH}(4)\right] + .1$, and therefore the cost to go from CLA - .1 to CLA is $\frac{.1 \cdot \text{CAS}}{\text{CLA} - \text{CLH}(4)}$. The engineer data to go from CLH(4) to CLA must also be multiplied by $\frac{.1}{\text{CLA} - \text{CLH}(4)}$ to determine the number of engineers needed to go from CLA - .1 to CLA.

b. EXEC Routine

The function of the executive routine is to:

- 1. Read in the budget constraints, number of years, and the logical variables which control report generation and resources level ceilings.
- 2. Perform necessary tape positioning functions.
- 3. Control iteration on multi-year passes.

c. INIT Routine

This routine reads in the edited input and writes out the limited war versus task matrix and the system support versus task matrix including the row averages. These averages are the sum of the system contributions for a given task divided by the number of systems supported by that task. The column totals and averages are also printed. The column total for a given system is the sum of the contributions for all tasks that support that system. The column average for a given system is the sum of the contributions divided by the number of tasks that support that system. These column averages are retained and become input to the BJP routine.

Since the only constraint to the optimization problem is money, all costs associated with a given task are adjusted to include the costs of the contract and in-house engineers. The equation used for this process is:

$$C_{k} = CS_{k} + CENG \cdot (EC_{k} + EI_{k})$$
 (1)

where

k is the resource level

CS, is contract and support dollars

EC, is contract engineers

EI_L is in-house engineers

and

CENG is the cost of employing one engineer for one year. This cost is currently set at \$12.7 (Note that all costs are expressed in thousands of dollars).

d. BJP Routine

The input for this routine is the edited task data and the average contribution for each system. The output is the 1498 associated work unit list, the adjusted system support versus task matrix, and the technological objective support versus task matrix including row averages.

The adjusted system contributions are determined by the following equation:

if
$$b_j \leq \widehat{b}_j$$
, $b'_j = b_j$ (20)

if
$$b > \overline{b}_{j}$$
, $b'_{j} = b_{j} \left[1 + 2.5 \left(b_{j} - \overline{b}_{j} \right) \right]$ (2b)

where

b, is the original system contribution

 b_{j}^{t} is the adjusted system contribution

and

b, is the average system contribution for all tasks.

This adjustment has the effect of increasing the contributions to a system for those tasks whose support is greater than the average. In most cases the average contribution for a task is higher than its unadjusted average on the system support matrix; it cannot be lower.

e. SMLP Routine

SMLP, the "simulated linear programming" routine, is the central subprogram of the system. A thorough understanding of this routine is necessary for the successful implementation of the RDE program. The major requirement of this program (solving for the optimal allocation of funds) can be described as a linear programming problem with the variables being the resource levels of the different tasks. The constraint equation of this problem is the inequality requiring that the sum of the costs of the selected tasks does not exceed the laboratory's budget; the objective function is the linear functional representing the sum of the values of the resource levels of each selected task. Since there is only one constraint equation, and since the variables can only be 1 or 0, representing funded or not funded, the iterative Simplex method of solving linear programming problems can be replaced by the more direct approach of considering the ratio of value to cost for each resource level of each task.

 $\ensuremath{\mathtt{RDE}}_k$, the value of resource level k for a given task, is determined by the following equation:

$$RDE_{k} = \frac{CL_{k}^{\prime} - CL}{CL} \left(d \cdot B_{k} + T_{k} \right) \tag{3}$$

where CL is the present confidence level of the task

 CL_k' is the confidence level achieved if the task is funded at RL_k

d is the ranking factor

 B_{L} is the total system contribution

and T_{k} is the total technological objection contribution

The confidence level, CL, for the first year of a five-year problem is given as input data. The confidence level for each succeeding year remains at CL if the task is not selected, or becomes the CL'_k of the preceding year if resource level k is selected. The projected confidence level, CL'_k , is determined by linear interpolation of the cost versus confidence level function derived from the input data.

Let x_m represent a confidence level of .1 · m where m = 2, ..., 8 and let z_m represent the cumulative cost to reach x_m starting at CL. Then if C_k , the

resource level k funds, is contained in the interval, $z_m < c_k \le z_{m+1}$, the projected confidence level, CL'_k , can be determined by the following equation:

$$CL'_{k} = x_{m} + O.1 \frac{C_{k} - z_{m}}{z_{m+1} - z_{m}}$$
 (4a)

If, however, $C_k \le z_m$ where $x_{m-1} \le CL < x_m$, the following equation must be used:

$$CL_{k}^{\prime} = CL + (Xm - CL) \frac{C_{k}}{z_{m}}$$
(4b)

The following input data will be used to determine a cost versus confidence level graph (Figure 2) and as sample data to clarify some of the equations.

		CONFIDENCE LEVEL	COSTS TO ACHIEVE
		. 3	10
CL = .24	$C_{1} = 13$. 4	0
CL ,11	$C_2 = 25$.5	20
	_	.6	20
		. 7	0
		. 8	5
			•

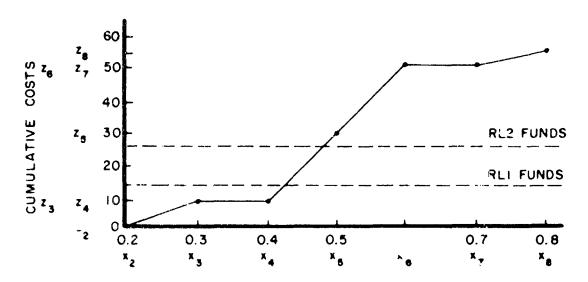


Figure 2. Cost versus Confidence Level Graph

Using the above sample data, CL'₁ for the first year can be calculated from (4a) as follows:

$$CL_1' = x_4 + 0.1 \times \frac{C_1 - z_4}{z_5 - z_4} = 0.4 + 0.1 \times \frac{13 - 10}{30 - 10}$$

= 0.4 + 0.1 \times \frac{3}{20} = 0.415 = 0.41*

and if resource level 1 were selected for the first year, CL'2 for the second year is:

$$CL_2' = x_8 + 0.1 \times \frac{C_2 - z_8}{z_8 - z_5} = 0.5 + 0.1 \times \frac{25 - 18}{38 - 18}$$

= 0.535 = 0.53*

Note that
$$z_5 = \frac{.5 - .41}{.1} \times 20 = 18$$
 and $z_6 = z_5 + 20 = 38$

The ranking factor d is used to adjust the total system contribution of a task according to its relative importance with respect to the other tasks of that division. The equation for determining d is:

$$d = e^{-x^2} + 0.37 \tag{5}$$

where

$$x = \frac{R - I}{D_0 - I}$$

e = 2.71828...

R is the ranking of the task within the division

and

D_n is the number of tasks in division n.

Note that d ranges from 1.37 for R=1 (the most important task) to $\frac{1}{e}$ + .37 = .367 + .37 = .737 for $R=D_n$ (the least important task).

The total system contribution, $B_{\hat{k}}$, is calculated by the following equation:

$$B_{\mathbf{k}} = \sum_{j} b_{j}' \cdot c_{j} \cdot T_{\mathbf{k}, j}$$
 (6)

where

 b_j^i is the adjusted contribution of this task to system j c_i^i is the weight of system j as determined by AFFDL

^{*}CL' is always truncated to the nearest hundredth because any smaller increment has no useful meaning.

and

 $T_{k,j}$ is the timeliness factor for resource level k with respect to system j.

 $\Upsilon_{k,j}$ is dependent upon the ratio of y_k to t_j where y_k is the number of years of resource level k funding required to reach a confidence level of .8 and t_j is the required progress rate from system j. Actually, t_j is the expected time-to-completion for system j as determined by Hq AFSC. The ratio $\frac{y_k}{t_j}$ then defines $\Upsilon_{k,j}$ as follows:

If
$$\frac{y_k}{t_j} \le 0.5$$
, $T_{k,j} = 2 \cdot \frac{y_k}{t_j}$
If $1.5 < \frac{y_k}{t_j} \le 1.5$, $T_{k,j} = 1$
If $1.5 < \frac{y_k}{t_j} \le 2.0$, $T_{k,j} = 4 - 2 \cdot \frac{y_k}{t_j}$
If $2.0 < \frac{y_k}{t_j}$, $T_{k,j} = 0$

This is shown graphically by Figure 3.

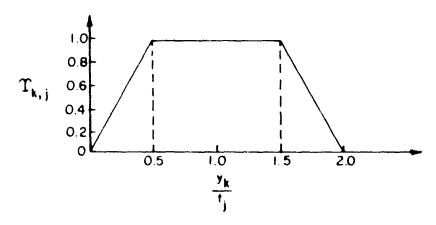


Figure 3. Timeliness Function Graph

The purpose of this function is to devalue those tasks which will be completed too early or to late to aid the development of the system. y_k is determined by first calculating the confidence level achieved when the task is funded at resource level k for the fixst year. If $\operatorname{CL'}_k \leq 0.8$, CL becomes $\operatorname{CL'}_k$ and a new $\operatorname{CL'}_k$ is calculated by again funding the task at resource level k. This procedure continues until $\operatorname{CL'}_k$ exceeds 0.8. The number of years that are required to reach .8 in this manner is y_k . (Fractional years are considered whom years).

For example, using the data of Figure 2, y₁ and y₂ can be determined as follows:

YEAR	CL ₁	\mathtt{CL}_2
1969	. 4	. 2
1970	. 41	. 47
1971	.47	. 59
1972	. 53	.8+
1973	. 59	
1974	.8+	

Therefore,
$$y_1 = 5$$
 and $y_2 = 3$.
Then, for $t_6 = 3$,
 $Y_1, 6 = 4-2 \cdot \frac{5}{3} = \frac{2}{3}$ and
 $Y_2, 6 = 1$.

The total technological objective contribution is calculated by the following equation:

$$T_{k} = \sum_{j} q_{j} \cdot h_{j} \cdot T_{k,j}$$
 (8)

where

and

g, is the contribution of this task to technological objective j h, is the weight of technological objective j as determined by AFFDL $T_{k,j}$ is the timeliness factor for resource level k with respect to technological objective j. Tk. is calculated in the same manner as the timeliness factor for systems. This requires that the progress rate for each technological objective be given.

After the two objective coefficients, RDE, and RDE, have been calculated, the maximum ratio of $\frac{RDE_k}{C_k}$ is determined. * The resource level k giving this maximum is then the most cost-effective resource level for this task. After the most cost-effective resource level is determined for every task, the cost-effectimeness ratios are arranged in descending order. The tasks are then funded in this order until the entire laboratory budget is expended. If, after r tasks are funded, the cost of the (r + 1) st task is greater than the remaining budget, the (r + 1) st task is not funded. ** The confidence levels of the funded tasks are updated to the CL', associated with the selected resource level. After the selections

^{*}If $CL_k' > .8$, C_k becomes $10 \cdot (.8 - CL) \cdot C_k$.

^{**} It is possible to continue to search the list for a task whose required funds are less than the remaining budget. This is not done by this routine and therefore the above set of selections is not truly optimal unless, of course, no task can be found in the remaining list whose required funds are less than the remaining budget.

are made and confidence levels updated, this routine writes out the Priority List and the project summary (Annual Report) for the year being considered.

f. FNAL Routine

This routine is used if more than one year is being optimized. It is entered after the budgets for all years have been optimally allocated. The results of these optimizations and the edited input is used to construct a history of each task for the time period under consideration. A maximum time period of five years is allowed. Any task not selected during this time period is added to the list of "tasks not selected for any year." This routine also writes the system and technological objective profiles. These profiles show the progress of those tasks that support each system or technological objective at a level \geqslant .7.

As the final report for each task is being written, the facility-utilization input data is interrogated to determine the number of facility occupancy hours used by each task during each year. A task is charged for using a facility during the year it reaches the confidence level associated with that facility. If the confidence level of a task is increased by more than .1 during a year, the number of facility occupancy hours used is the sum of the hours associated with the confidence level gained. This is illustrated by the following sample case. If the input data for a task includes:

CL	FACIL T TY CODE	OCCUPANCY HOURS	FACILITY CODE	OCCUPANCY HOURS
.3	1000	15	2000	24
.4	3000	30	3005	12
.5	3000	15		
.6	2000	40	3005	24
.7	1000	120	2000	50
.8	2000	20	3000	12

and if the task history is:

1968	1969	1970	1971	1972	1973
.28	.40	. 46	. 52	. 73	. 76

ASD-TR-68-23

then the facility utilization is:

FACILITY COLE	1969	1970	1971	1972	1973
1000	15	0	0	120	0
2000	24	0	0	90	0
3000	30	0	15	0	0
3005	12	0	0	24	0

g. FACT Routine

The main function of this routine is to match the facility codes with the facility titles and to determine the total yearly usage of each facility. The input to this routine is the sorted facility data from FNAL and the list of all facility titles. The output is the facility utilization report.

J. APPLICATIONS AND LIMITATIONS

This program, as written, is constrained to the structure of AFFDL; hence emphasis has been on a consistent and well-defined program structure. Obviously, most organizations will not have five divisions and their hierarchal arrangement will be more or less than the three levels (division, project, task) assumed by this program. This type of organizational difference, however, is not too critical since the determination of the value coefficient (except for the AR factor) and the allocation of funds are not affected by the organizational structure. It is, therefore, possible for an organization with more or less than five divisions to redefine these divisions to give exactly five distinct groups. This may not always be desirable, but when it is, it eliminates the time and effort needed to modify the program. Likewise, if the organization has more than three hierarchal levels, it may be possible to define a task in a manner that includes more than one lower level. AFFDL accomplishes this by defining more than one subtask for the same task.

The system and technological objective contribution terms of the value coefficient may seem to be Air Force dependent. There is no reason, however, to preclude these being used to represent items such as company goals or products manufactured. As an example, for an activity representing the development of a very efficient distillation process for a chemical company, the g_j terms could represent the contribution of this process to the manufacturing of each of the company's products and the h_j terms could represent the importance of each of tiese products to the overall company development.

A possible future revision is the increase of the number of resource levels. Programming-wise, it is a minor change and could be implemented within a few days. The added resource levels would result from interpolating the linear function derived from the two points RL1 and RL2, i.e., RL1.1 resources would be RL1 resources plus.1 of the resources between RL1 and RL2. The advantage of having additional resource levels would be an increase in the completed overall effectiveness of the lab and a more flexible funding approach for each task. The disadvantage, however, of this approach lies in the assumption that the function formed by the two resource levels is linear and not step-wise continuous as is probably the case. Related to this disadvantage is the task engineer's confusion and lack of confidence in the program caused by his being asked to perform his activity at a budgetary and manpower level that he had not presented to the program. Our experience has shown that better task engineer cooperation has been achieved by keeping the number of funding levels at a minimum and, therefore the alternative of additional resource levels has not, as yet, been implemented.

The "facility-utilization" data in no way affects the optimal allocation of resources. This may not be a realistic assumption, and, particularly if a facility is being used beyond its capacity, it may be desirable to constrain its use. One method of doing this would be the non-funding of tasks using this facility once its capacity is met, assuming, that funding is done by ranking on the priority list. This would eliminate over-usage but would result in a suboptimal allocation since the linear-programming problem would now have two constraints, thereby requiring an iterative L. P. solver. If the disadvantage of using a large L. P. algorithm is more attractive than the disadvantage of exceeding facility capacities, it is then suggested that all facility constraints be considered in the L. P. program and activities representing the construction of new facilities be added.

The program as written will only optimize for up to five years. This limit of five years may be increased indefinitely since the iterative process is independent

of the number of years to be optimized. The only modifications required in the program would be to change the storage allocation of some of the variables and to revise the FINAL REPORT, FACILITY REPORT, and the PROFILES. Before the decision to increase the number of years is made, however, it must be noted that any allocation beyond the first year is suboptimal since it does not consider those tasks that may originate during the following year. Particularly, during the later years, it is possible to have an excess of funds since many tasks may have already reached . 8 in preceding years. One solution to this problem is to have the budget decrease by a given percent each year. This is equivalent to assuming that each year the newly proposed tasks will require a given percentage of the budget. It should also be noted that the overall effectiveness of the laboratory for five years is larger when all five years are considered simultaneously than when each year is considered separately, even though the effectiveness of individual years may be lower. The problem of considering all five years simultaneously is quite complicated, however, and would again require a large-scale L.P. solver.

If it is desirable to negate the influence of the AR factor in the objective coefficient, the easiest approach would be to use the same AR number for every task. If, however, modifications have to be made to the program, the easiest solution would be to eliminate the AR factor from the value coefficient equation. The value coefficient also contains the term $\frac{1}{CL}$. This dividing of the value coefficient by the present confidence level has the effect of heavily weighting those tasks with low confidence levels. This is done to emphasize starting tasks over tasks nearing completion and is consistent with the philosophy of the Air Force Flight Dynamics Laboratory. If, however, this emphasis is not desirable, the $\frac{1}{CL}$ term should be deleted from the value coefficient equation.

The assumption of constant resource level funds and manpower for all five years leads to somewhat biased results in favor of those tasks which have rather constant resource requirements to reach each confidence level. In particular, those tasks which require very little funds to reach all but one confidence level and large funds to achieve the remaining confidence level may never get selected. This is caused by their RL1 and RL2 funds not being adequate for them to reach. 8 in time to get credit for the systems and technological objectives supported.

The director of this type of task may also be embarrassed by being selected at a resource level for one year which (from his cost versus confidence level function) indicates that he should be able to increase his confidence level by up to .4 when, in fact, other nonmonetary constraints exist that limit his progress to an increase of at most .1. A possible future revision to the program that may solve this problem is for the engineer to replace his RL2 data by the maximum confidence level he can achieve each year. RL2 could then be the resources needed to reach this given confidence level.

When this program is used for the first time, there may be a tendency for the task engineer, or bis equivalent if a different organization structure exists, to "beat the system" to assure funding. This can easily be done by overestimating the progress attainable from his requested resources. This manipulation of the data can be discouraged by careful examination by the engineer's supervisor and by reference to the historical data. An interesting addition to the program could be the identification of those tasks whose predicted progress is inconsistent with their historical data.

SECTION III INPUT-OUTPUT DESCRIPTION

1. INPUT FORMAT

The input form is shown in Figure 4. There is a maximum of 12 cards per task. Columns 1 - 8 of every card contains the variable ITASK; column 78 of every card is plank; and columns 79 - 80 of every card contains the card sequence number.

Each card will be described separately with the descriptors in the MODE column defined as 'I' for integer, 'R' for real number, and 'A' for alphanumeric data. All real numbers must either contain a decimal point or be right-justified if a decimal point is not used. All monetary input is inthousands of dollars. Card 1 contains:

COLUMN	VARIABLE	MODE	DESCRIPTION
1 - 8	TTASK	I	Task number, must be in- teger ≥100,000
9 - 29	NAMT (1,,4)	A	Task engineer's name, preferably with last name first.
3⊍	IDIV	I	Division number, must be ≤ 5, checked by EDIT
31 ~ 35	ISYM	A	Office symbol
36 - 40	LEXT	A	Telephone extension
41 - 64	NAMP (1,,4)	A	Project engineer's name, again with last name first
65 - 66	LIM(1)	A	Percent of task's effort sup- porting limited war
67 - 68	LIM(2)	A	Percent of task's effort sup- porting special air warfare
ő§ - 70	LIM(3)	A	Indicator denoting a signifi- cant contribution to the Air Force's performance of its classical role of interdiction. 'XX' indicates contribution; blank indicates no contribution

COLUMN	VARIABLE	MODE	DESCRIPTION
71 ~ 72	LIM(4)	Α	'XX' or blank, denoting con- tribution to close air support
73 - 74	LJM(5)	A	'XX' or blank, denoting con- tribution to logistics
75			Blank
76 - 77	AR	R	Rank of task within division. "I" represents the most important task. EDIT checks the rank to assure that it does not exceed the number of tasks within its division.
78			Blank
79 - 80	IC	I	'01' representing the first card for this task. Checked by EDIT.
Card 2 contains:			
9 - 54	ITITLE (1,,8)	A	Task title containing up to 46 characters
55 - 59			Blank
66 - 63	CS(1)	R	Contract plus support funds requested at RL1 for 1969
64 - 67	CS(2)	R	Contract plus support funds requested at RL2 for 1969
68 - 69			Blank
70 - 72	CLH(1)	R	Confidence level of this task at end of FY 1965 (must be < .8)
73			Blank
74 - 77	CSH(1)	R	Contract plus support funds used in 1965
78			Blank
79 - 80	IC	I	'(2'

ASD-TR-68-23

COLUMN	VARIABLE	MODE	DESCRIPTION
Card 3 contain	<u>18</u> :		
9			Blank
10 - 54	FT (1,, 15)	I	Identification numbers of technological objectives supported by this task. Use three columns for each T.O. Use leading zeroes. Example: 7 should be written as 007
55 - 59			Blank
60 - 63	EC(1)	R	Contract engineers requested at RL1 for FY 1969
64 - 67	EC (2)	R	Contract engineers requested at RL2 for FY 1969
68 - 69			Blank
70 - 72	CLH(2)	R	Confidence level of this task at end of FY 1969
73			Blank
74 - 77	CSH(2)	R	Contract plus support funds used in FY 1903
78			Blank
79 - 80	IC	I	1031
Card 4 contain	ns:		
9			Blank
10 - 54	T (1,, 15)	R	Percent of task's effort that supports the T.O.'s directly above these columns. Use three columns for each T.O. supported. Entry must contain decimal point and be ≤ 1.
55 - 59			B lank
60 - 63	EI(1)	R	In-house engineers requested at RL1 for FY 1969

COLUMN	VARIABLE	MODE	DESCRIPTION
64 - 67	EI(2)	R	In-house engineers requested at RL2 for FY 1969
68 - 69			Blank
70 - 72	CLH(3)	R	Confidence level of this task at end of FY 1967
73			Blank
74 - 77	CSH(3)	R	Contract plus support funds used in FY 1967
78			Blank
79 - 80	IC	I	'04'
Card 5 contains	<u>:</u>		
9			Blank
10 - 39	IS (1,, 15)	I	Identification numbers of all systems supported by this task. Use two columns for each system. Use leading zeroes.
40 - 69			Blank
70 - 72	CLH(4)	R	Confidence level of this task at - of FY 1968
73			Blank
74 - 77	CSH(4)	R	Contract plus support funds used in FY 1968
78			Blank
79 - 80	IC	I	'05'
Card 6 contains	<u>:</u>		
9			Blank
10 - 39	S (1,, 15)	R	Percent of task's effort that supports the systems directly above these columns. Use two columns for each system supported. Entry must contain decimal point and be less than 1.

COLUMN	VARIABLE	MODE	DESCRIPTION
40 - 69	RWU (1,,10)	1	1498 related work units. Use three columns per unit. Use leading zeroes
70 - 78			Blank
79 - 80	IC	I	'06'
Card 7 contains:			
9			Blank
10 - 11	CL	R	Base confidence level of the confidence level versus cost curve. It is the first even tenth greater than CLH (4). Column 10 must contain a decimal point3 ≤ CL ≤ .8
12 - 16	CAS	R	Contract plus support funds necessary to reach CL from CLH (4)
17 - 21	ENC	R	Contract engineers needed to reach CL from CLH (4)
22 - 26	ENI	R	In-house engineers needed to reach CL from CLH (4)
27 - 30	IFAC (1)	I	Identification number of one of the facilities needed to reach CL from CLH (4)
31 - 34	OCC (1)	R	Number of hours of use of facility IFAC (1) needed to reach CL from CLH (4). Fractional hours not considered.
35 - 42	IFAC(2), OCC(2)	I,R	Same as 27 - 34
43 - 50	IFAC(3), OCC(3)	I, R	Same as 27 - 34
51 - 58	IFAC(4), OCC(4)	I, R	Same as 27 - 34
59 - 66	IFAC(5), OCC(5)	I, R	Same as 27 - 34
67 - 74	IFAC(6), OCC(6)	I, R	Same as 27 - 34
75 - 78			Blank
79 - 80	IC	I	'07'

ASD-TR-68-23

Cards 8-12 have the same format as card 7 with the exception that CL now is the previous $CL\pm.1$ and all the resources (CAS, ENC, ENI) and facilities represent the requirements of going from the previous CL to the present CL. If CL is .8, no more cards should follow for this task.

The set of up to twelve cards per task is read into the EDIT routine. This data must be preceded by a card containing, in columns 1 through 5, the total number of tasks. This number is used as a check to guarantee that the data for all tasks has been read in. A maximum of 250 tasks may be considered. The output from EDIT is the master file which is input to the INIT routine. The following two control cards are required as input to the EXEC routine (refer to System Flow Diagram, Section 1.3). Card 1 contains:

COLUMN	VARIABLE	MODE	DESCRIPTION
1 - 5	DOFAC	L*	'T' if facility report is to be written. 'F' otherwise.
6 10	DOREP	L	'T' if the system support matrix, the adjusted system support matrix, the technological objective matrix, the limited war matrix, and 1498 associated work unit list are to be written.
11 - 15	DOPRO	L	'T' if technological objective and system profiles are to be written
16 - 20	DORLI	L	'T' if resource level 1 can only be used
21 - 25	DORL2	L	'T' if resource level 2 can only be used
Card 2 contains:			
1 - 5	LASTY	I	Number of years to run pro- gram. Must be ≤ 5
6 - 15	BUDG(1)	R	First year budget
16 - 25	BUDG(2)	R	Second year budget
26 - 35	BUDG(3)	R	Third year budget
36 - 45	BUDG(4)	R	Fourth year budget
46 - 55	BUDG(5)	R	Fifth year budget

^{*}L denotes logical variable

FEARINGON 0 0 0 0 0 0 0 0 0	PAC - PACILITY CODE	XXX 27 0 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
FE A F IN ON 0 0 0 1 1 1 1 1 1 1	₩ Ç		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18
FE A R IN ON D O O O O O O O O O	Chaestas at Division Li programma to Coll. Amin in it programs in any sale programma to Coll. Amin in it programs in its constitution in any sale programs in its constitution in its	2 4 6 B		78
	COMPIDENCE LEVEL APPLICABILITY BARE APPLICABILITY BARE APPLICABILITY BARE APPLICABILITY BARE IN . IN STREET APPLICABILITY AP	15 (A)	0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31
FEA FINOW 0 0 0 1 1 1 1 2 1 3 1 0 5 00 1 00 00 00 00 00 00 00 00 00 00 00 0		OKEAR NEV	S PIO N/S E O I 9 9 2	
2			4.8	0.0000000000000000000000000000000000000
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-	0 7 6 0 8 7 6	-:
		0		
3 4 7 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10 t	4 4 4 4 4 4 4 4 4 4	3 • 7 0 2 00 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 2 2 8

Figure 4. sample input Form

2. PROGRAM CONSTANTS

The following information, although in data statements within the program, is peculiar to the Air Force Flight Dynamics Laboratory and, therefore, should be considered as input data. The defining routines for this data are in parentheses.

- List of valid facility codes (EDIT)
- Number of tasks within each division (EDIT, INIT)
- Specified times-to-completion for systems and technological objectives (BLOCK DATA)
- Designated weights of systems and technological objectives (BJP)
- Cost of one engineer for one year (BLOCK DATA)
- Project titles (BLOCK DATA)
- Division titles (SMLP)
- Facility grouping titles (FACT)

In addition to the above information, the titles for each facility are read in by the FACT routine under an (I4, 9A6, A2) format. Columns 1 - 4 of each card contain the facility code and columns 5 - 60 contain the facility title.

15 APR 68

CATA
INPC
1969
4

			S
LIMITED WAR DATA LE SE IN CS LG .3 .3 XX XX XX			DCC HOURS
R OX			2
323		010	FACILITY
SE .	•	w e	4
23.6	•	18	ဂ န္
	•	¥ 50	0 0
.		3 A	L I TY
AR 27	× × × × × × × × × × × × × × × × × × ×	# # # # # # # # # # # # # # # # # # #	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		31.2	
	200	¥8	ម្លីភ្ជុំ
	500	ASSCCIATEC 1498 WORK WHITS 003 COS GOG GOT GGB 009	*
	2 0 0 6 .	2 00	C 1 1 3
X SE	9 •	o	₹
ESPC			000 000 000 000
ية د	SUPPORT OF SYSTEMS SYS C5 06 07 08 09 10 11 12 13 50P .6 .6 .6 .6 .8 .6 .9 .6 .		211,
10.1	****		01 11.11 006
18 UC	5	ñw. Te.	FI A
AEASUREMENT OF STRUCTURAL RESPONSE	. 7.	FY - 69 RESOURCES CS ENGC ENGIN RLI 100.6 3.8 RLZ 325.0 1.2 7.6	FACILITY UTILIZATION Y CCC FACILITY CCC FACILITY OCC FACI
=	٥ 2.	2 0 4 7 5 0 4 7	
# 5 F F	<u>.</u>	*	± 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
E A S U	. .	400 m	FAC1L.1TY CODE 502 502 502
•	24.		
TITLE	06 JS 0 41 %.	172	0000 0000 0000 0000 0000
.	5 2 *.		<u> </u>
0			#ACILITY CODE 900 900
4702		0.0 4.0 0.0	*
2	1000		¥
7ASK 13470260	2 % e	# 0 F	### ### ### ##########################
	\$10 0C1 0C2 0O4 0O5 0O7 0O8 0C9 C10 014 015 018 019 020 091 101 50	MESTCRY 68 0.30 0.40 0.50 65.0 75.0 115.0	CL VS. MESCUMCE CATA CL CS ENGC ENGIN
-4	ō 5*		2
1 *3151410	٥ • •	* O O	* 000 * 000
11811	ŏ	.	2
5	5.5	చ 5	J • • •

DATA S LG			DCC HCURS
LIMITED WAR DATA			FACILITY UTILIZATION CCC FACILITY CCC FACILITY CCC FACILITY OCC FACILITY HCLRS CCDE HCLRS CCCE FOURS CODE
13.	•	RK UNITS	000 - 00 - 00 - 00 - 00 - 00 - 00 - 00
AR 16	SYSTEMS.	1498 WO	FACILITY
	SYS CS 09 10 11 12 13 14 SUP .7 .7 .8 .7 .8 .5 .5	ASSCCIATEC 1498 WORK UNITS OCT CO9 GO1 G12 R13	200 200 8
	SUPP 10 11 12 18 .7 .8	00 8 00	FACILITY
•	rs C5 09		L12 AT 10N CCC HCLPS
G CRITERI	% %	100 100	117 UTII FACTLITY CCOE
L 1E5TIN		00000000000000000000000000000000000000	FACIL CCC MCLRS
STRUCTURAL TESTING CRITERIA	•	FY - 69 RESCURCES CS ENGC ENGIN RLI 100.0 0.3 6.0 RL2 1000.0 0.4 12.0	FACTUITY
1116	***0	#11 1	0 m + 0 0 0 m 0 0 m 0 0 m 0 0 m 0 0 0 m 0
	SUPPORT OF TECH OBJS TC OCT OC2 004 010 013 014 015 016 046 SUP .0 .9 .9 .8 .1 .8 .8 .8 .4 .	# 0 0 0 4 4 0 4 4 0 0 0 0 0 0 0 0 0 0 0	FACTULITY OCC SOCE HOURS SCC ACGG.
145K 134703C0	SC##081		1 0 4 2 0 4 3 1
	0 400 200	1 6 4 0 0 7 N	ESCO ESCO O.
BIVISICA	0 100 001	**************************************	CL VS. RESCURCE CATA CL CS ENGC ENGIN .7 20.0 0. 6.0
C)	- 47	3	~

Figure 5. Input Data Listing

APR 68	AVERAGE ACROSS	0.655	0.671	0.00	0.100	0.500	0.500	00.00	0.300	700	9,00	0.500	1.000	0.100	0.553	000	0.550	900			0.100	0.100	0.650	0.425	0.572	0.03	0.728	0.614	0.540	0.633	0.700	880.0	0.00	000	0.600	009.0		0,850	0.850	0.550	0.666	0.633	0000	0 6	00.00	0.300	0.600	0.300	0.600	000	000	
15	92	•	•		•	•	•	•	•	• •		•	•	•	•	•	•	•	•			•	•	•	•	•	• •	•	•	•	•	•		•	•	•	•		•	•	•	•	•			•	•	•	•	•	•	
	5	•	•		•	•	•	•	•	• •	•	•	•	•	•	•	•	•	• ,		•	•	•	•	•	•		•	•	•	•	•		•	•	•	•		•	•	•	•	•			•	•	•	•	•	•	
	±	• '	. <	~	۲.	٠,	•	•	. ~		•	٠.	o.	·• '		•	ŗ	•	• •	. ~	•	•	•	•	-	.		r.	۲.	• '			· ~	•	•		. 4	•	e r	•	•	•		: <		•	•	•	٠.	٠٠	•	
	13	•	ڻ ج		•	•	ŗ	•	•		•	٠,	•	٠.	•	:	•	• •	• •		•	•	•	* 1	ů,	: .	. ^:	•	•	•	•	•	. •	٠,	•	•	•		•	•		•	•	. •			ę.	•	•	ć.	•	
	21	6.		٠.	۲.	'n,		•	. "	٠.	÷	٠.	o.	•	• •	. •	•	• .	, ~		•	•	• '	•	ç r			r,	9.	~.'	•		•	٠.	•	•	. <	•	÷.	•	•		•	- ح	•	•	9.	۳.	•	e e	:	
MATAIX	11	91	- 4		۲.	ب د	Ç,	•) ×;	: .	•	•	•	•	•	•	. <			; .	•	•	٠.	•	•	• •	. ~	۲.	*	•	٠,	•		•	•	•	•		•	•	•	•	•	• •		•	•	•	•	•	•	ıtrix
TASK MAT	10	E .			۲.	•	٠,	. ") 4 7	٠,	•	٠.	•	٠,	•		•	2		•	•	•	•	•	•	• ~	: .	۲.	•	•	٠,	•		•	•	•	•		•	•	•	•	•	• •	•	•	•	<u>.</u>	•	•	•	Teek Metrix
VEW SIJS T	6	ę,		۲.	~	٠,١	ŗ	. ~			٠,	٠.	•	•	•	•	. <	•		•	~	~	~	•.'	•	. ~	•	٠.	*.	¢	. •	•		•	•	. '	•	•	•	•		•	•		•	•	•	- -	•	•	•	rt versus
>	SYSTEMS 9	٠	٠,		•		•	•		•	•	٠.	•	•		• ,	. 4			~	•	•	•	•	٠,		•	•	•	•	٠,		·	•	•	•	• •	•	•	•	•	•	•		•		•	•	•	•	•	em Support
9	~	•	. •		• '	'n	•	•		•	•	٠,	•	•	Ç 4		. •				•	•	•	•	Ç 1.		<i>-</i>	•	•	•	. <	•		•	•	•		•	•	•	•	•	• •		•	•	•	•	•	•	•	Sample System
RDE 1969	٠	٠,	٠,		• '	•	C	•		•	•	•5	•	•	<u>,</u>	• •	, «	. 0	•	~	•	•	•	•	• ^	- •		•	•	`.	. `	. ·	٠.	•	•	•		•	•	•	•	•	• •		•	•	•	•	·:	•		e.
c c	æ	٠,٠	. •	۲.	~ '	÷,	•	. ,	; v;		•	s.	•	. •	•		. 4	•		. •	۲.		ŗ.	•	Ç 4	? ~	~	~	•	e.	•		•	•	•	•	: .		э	ĸ.	•	•			•	•	•	ŗ.	Ç.	• •	•	Figure
	•	•			~	r; ·	•		· •	•	•	ŗ.	•	٠,	ņ -		. 40	٠,	•	•	۲.	~	sr, -	•	ů 4	: ~	~	۲.	•	•	• •	• •		•	•	e 4	: .	•	•	u r, (٠, ١	Ç 4	• •	•	•	•	•	~	•	• •	•	
	æ	•		۲.	۲.	٠. د				•	•	••	•	٠,	•		. •	•	•		٠.	۲.	•	٠.	. 4	? ~		•	•	•	• •			•		• •		•	•	٠, ١	•	•			•		• '	~	• •		•	
	~	•		•	•	•	•	• •		•	•	•	•	•	. 1				•		•	•	•	•			•	•	•	•	• •		•	•			•	•	•	•	•	• .			•	•	•	•	• •			
	-	•			۲.	•	۰,	- (-			•	•	•		. 4		. •	•	•	٠.			•	•	٠.			•	•		• •		•	•	٠,	• •	•	•	• '	~ :	r r	- 4			•		•	•				
	TASK	13470200	13470400	,,	3670201		71 -	, ,	,		~	~,	-,,	., .		, ,,		, ,-,	~,	~1		, ,	70518961	14670100	14670300	14670400	14670500	13660200	13660300				13660400						1 1001602		13641706		13461900	•	14266130	14250400	14250900	14761000	14261230	14312230		

							# DE 1969		By PRIME		VER SUS	S TASK	FATR	=			51	49A 66
				^	•	r	٠	^	SYSYE	6 S # 3	01	::		13	:		9.	25
			ů		ċ	« ·	7.0	٥. ،	7.0	9.0	1.2	4.0	1.6	۰	•	•		0.8109
			0	ċ	ن.	5.0	•		•	٥. و		•		.	•	•		67.53
			; ;			•	٠.٠		- 0	e 0		^ -						0.9083
			· د	۰ ر د د	ۍ او د د	• •	•			. 0			_					0.889
					8.0	0.0			•	0.5	_	_						3000
				6 0	5 .	•			s. O (en c	_	•		·				9000
			9 (9.0	7.0		•		•									3000
				• •	.	7 1	•	: :										0.4429
					; ;		• • c		• •									0.3000
			.	 						0.5						٥.		0.5753
				0	· ·	in.	5.5		0.5	0.5	٠.			ŗ				0.5000
			0		;	•	ö		٥.	•	•		_			•		2.0715
			c	ċ	ئ	•		٠.	•	•	•		_	•	٠	•		0.4023
			O	5 .0	£, 0	0.3	٠. د	5.0	0.5		s. o	_		•	•	•		6066.0
			•	•	* .0	•••	4.0	4.0	4.0		* ·0	•		*.0	•			0004.0
			a	0	ö	ċ		٥.	•	•	•		_	•	•	•		9534 0
				•	.0	9.6	7.0	2.1	7.0		-	- C		•	•	ċ		0.6303
				\$	9.0	9.0	7.0	٥.،	٥٠٠		٠.	•				•		0.6303
					ن	0		٥.	•	٠.	•	•	_	•	•	•		9006.0
			, 0					0	0.0	٥.			_	••	6.0	ċ		0.9046
					9	0		· o	0		•			•	•	•		0.8907
				• •		·					•			•		•		0.8907
			· .	• o	. ^	· · ·	• d	• c			. 0	•		٥.	•	•		0.8135
				•					•		•		_	4.0	4.0	•		0.4402
				ن ر							9.0	4 1	9.0	5.0	6.0	•		1919.0
			• •	•		9.0	6.0		0.0		-	•	6.0	٥.	٠,	•		0.7375
				, o		0.0	•		4.0			•	0.5	•	•	•		0.7234
			د.	ن.	6.0	0.0	0	٠		1.2		œ	1.2	0.0	•	•		0.9884
				٥.	6.3	6.0	•		•	6.0		.	n .	•		ó o		6.7313
				;	ن.	ó		٥.	.0	••	٠	٠ ص	9.0	4		•		70.0
			.,	.,	ċ	9.6	•	•	•	9		۰	••	•	, ,			1010
			٠.	· •	j	ċ			•	0	•			•	o -	•		11000
				ა	ن.	ċ				٠, د د	•	•	· · ·	•				7401
				ن	ċ	ċ				•	•		y (• -	•	•		
				ċ	ċ	•		ċ			•		•	n w		•		000
				٠		o o		·				,				• •		0.6229
				÷ o	•		•			• •		,	•					0.6171
				.) (e .	a ·	. د	•		, 4	•							0.4000
				o :	• •	•	·	•		•	,		4					0.6129
) (; ;	• 5 c		• •		• • •	• 6					•		1.4064
				·	• ·	ċċ	• ·						1.6	0.		·		1.4052
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			• •				ċ					.0	••	•	•		0.5933
6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	0.454 0.454			· · ·							•		•		•	•		0
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			 	** (4)	Ċ		ć.		:	C		••	••	•	•		~
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		•		ي ن	Ó		٠ •	.0	•	· ·		•			ċ		•
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			• •	ó	ċ		٠.	•	•			1.2		•	•		
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0			ξ.	Ċ	Ċ	٠ 0	٥.	•	ċ	•		9.0		•			_
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		.,	()	;	ů	.0	٠.	٥.	ċ	•		0.3		ċ			0
				ó	ó		c c	Ġ	0.	ċ	•		0.3		•	•		0
.3 0.3 0. 0. 0.3 0.3 0.3 0.3 0. 0. 0. 0. 0.0 0.0	.3 0.3 0. 0. 0. 0.3 0.3 0.3 0.3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	.3 0.3 0. 0. 0.3 0.3 0.3 0.3 0.0 0.0 0.0	•	ċ	<u>ن</u>	ċ	•	٠. د	٠ ن	ٔ	•		9.0		•	•		0.000
			•		ж СЭ (.	. '	٠, د د	•	6.0	• • n c		٠ د د			•		0000
				• .> (÷ (e 0 (· ·	·		٠ •		•	•	•				0.6234

Figure 7. Sample Adjusted System Support versus Task Matrix

	RDE 1969	GK VERSUS TASK MATRIX	PT1	15
		TECH ORJS		
TASK 1 1 1 1 1 1 1 1	1 1 2 7 2 2 2	2 2 2 2 2 3 3 3 3 3 3 3	3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5	5 5 5
1234567~901234567	8 9 0 1 2 3 4	567890123456	78901234567890123	4 5 6
13470200 .9.90.89.).9.99.5				
	•9•••••			• • •
13470400 .9.09.79.9.9.99	.9.7.9	• • • • • • • • • • • • • • • • • • •		• • •
13670200			 	• • •
13671100				
13671400	3.			: : :
13671500 2 . 3	• • • • • • •			
13671600 .3				
13671700 .33.3.33.362			44.2	
13671701 .3330.5				
13680200				• • •
13680301 9.7 7.7				
13680406	.6	.7.		• • •
13680900	.6.6			
13691CO16.566				
13681002 6.6 6 6				
			• • • • • • • • • • • • • • • • • • • •	• • •
13681300 .669.9.976				
13681401 . 3 5.4 6 6				
13681502				
14670190 .78.66.6.57.0.7.				
14670300 .6 6.6 6.6.5 0.9				
14670500 .77.76.6.50.9				
13660200				
13660300			5	
13660600				
			.7.6.6	
13660800				
13660900		8.0.6.454	46.7.6	
13661000				
13661201				
			4	
13661203				
				• • •
				• • •
13661701			5.8.3	
13661702				
1366,000	• • • • •			• • •
			· · · · · · · · · · · · · · · · · · ·	• • •
14260300				
14260400		3.45.5.4	-1-6-4	•
14260800		3.67.9.9	.7.5.7	
14261000	1.1	1.3.4	.5.4.5	
14261100	6 . 6 .	.5.5		
14261200	• • • • • •	.4	-5-8-67-4-4-6-7-5	• • •

Figure 8. Sam

Best Available Copy

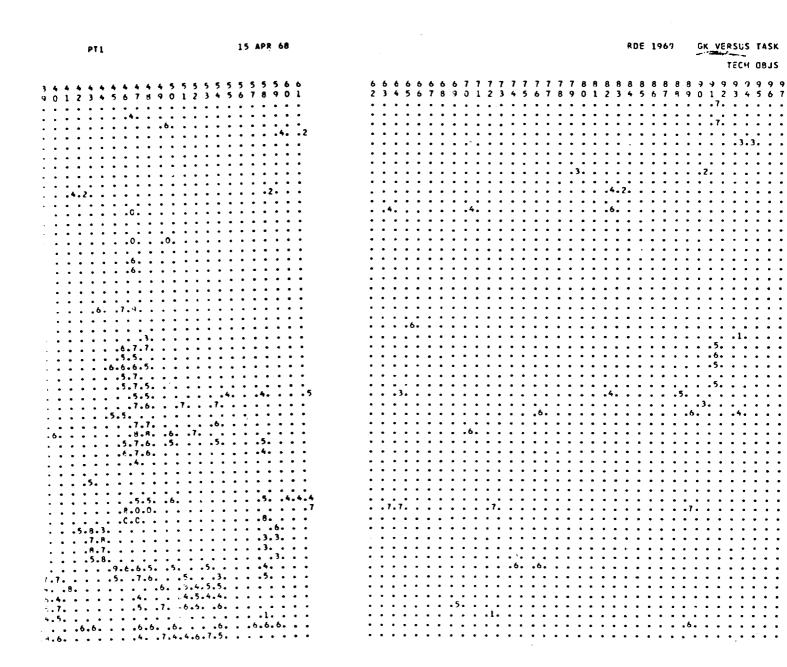


Figure 8. Sample Technological Objective Support versus Task Matrix

37

Bost Available Copy

	RDE 1967 GK VERS	S TASK MATRIX	PT2	15 APR 68
	YE	H OBJS		
	• • • • • • • • • • • • • • • • • • • •		1111111111	
56677777777778888				
		45678901234567		AVERAGE TASK
			-	0.873 13470200 0.640 13470300
				0.640 13470300 0.833 13470400
				0.320 13670200
				0.367 13670201
				0.333 13671100
				0.300 13671400
				0.247 13671500
				0.280 13671600
				0.307 13671700 0.373 13671701
				0.627 13680200
				0.627 13680301
				0.867 13680302
				0.893 13680406
				0.927 13680600
				0.487 13680700
				0.600 13680900 0.600 13681001
				0.600 13681002
				0.600 13661230
		• • • • • • • • • • • •		0.747 13681300
· · · · · · · · · · · · · · · · · · ·				0.593 13681401
· · · · · · · · · · · · · · · · · · ·				0.600 13681403
				0.347 13681502 0.700 14670100
				0.613 14670200
				0.627 14670300
				0.660 14670400
· · · · · · · · · · · · · · · · · · ·				0.653 14670500
· · · · · · · · · · · · · · · · · · ·				0.493 13660200
				0.547 13660300 0.567 13660500
· · · · · · · · · · · · · · · · · · ·				0.653 13660600
				0.673 13660700
· · · · · · · · · · · · · · · · · · ·			44	0.487 13660800
				0.540 13660900
· · · · · · · · · · · · · · · · · · ·				0.413 13661000
				1.000 13661201 0.493 13661202
				0.467 13661203
				0.467 13661300
				0.747 13661601
				0.767 13661602
				0.587 13661701 0.360 13661702
				0.360 13661704
				0.347 13661705
				0.533 13661800
		3		0.573 14260100
				0.500 14260300
				0.407 14260400
				0.620 14260800 0.207 14261000
				0.587 14261100
				0.527 14261200
	· · · · · · · · · · · · · · · · · · ·			

-us Task Matrix

15 4P3 68		
106157165	******** ** ** ** ** ** * * * * * * * *	
CLOSE SUPPORT	T Verbus A XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
INTERDICTION	### ##################################	i
SPECIAL AIR MARFARE	www.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r.r	
(IMITED AAR	с. п п п г г г г г г г г г г г г г г г г	
YASM	13470200 134700000 1347000000 1347000000 1347000000 13470000000 1347000000000000000000000000000000000000	

TASK			ASSO	CIATED	1498	WORK	UNIT	5		
13470200	0.02	293	205	3,6	367	023	033	310		
13470300	COS	007	009	001	012	013	•••			
13470400	102	CO3	005	Ü06						
13670200	303									
13670201	50.	0.77	9 .39	110						
13671100										
13671400	50 I									
13671593 13671699										
13671700										
13671701										
13680200	001	200								
13680301										
13680302										
13680405	9C5									
13680600	203	304	965							
13680700	102	5.72								
13680900	05.	0.2.2								
13681001 13681002	100	002 042								
13681290	001	yZ								
13681300	901									
13681401										
13681403										
13681502										
14670100	005	203	304	C 35						
14670200	508	009	310	CIL	012					
14670390 14679400	005 006	J06 J08	997 3 94	018 039						
14670500	033	005	C98	6.9						
13660200	363	003								
13660. J										
13669500	001	004	0.05							
13660600	003									
13660700	031	003	910	312	313	316	017	CIR		
13660800 13660900	002 001	006 003	907 905	008 006						
13661000	307	000	707	1700						
13661201	036	207								
13661202										
13661203										
13661300	005	007	-) UB	969	011	012				
13661601	^C 9	210	911	(12	513					
136616C2 13661701	008	011	2	Ŭ .3						
13661702	0.34									
13661704										
13661705	691									
13661800										
14266100	CGI	Gir s								
14260300				_						
14260400	004	055	<u>006</u>	Q 18	009	010				
14260800 14261000	101 331	303 COR	003	2. 4	205	0.14	337	07.0	0.10	•
1+261100	0 . 1	4 . 2	V 2 3): 4	005	006	037	968	139	
14261200	003	004	055	006	207	938	010	111		
14310200			- •	**						
14310300	991									
14310700	004									
14310900	001	005								

Figure 10. Sample 1498 Associated Work Units List

ı		PALCRITY	7	IST FUR	1969					Ā	6 APR 6
×	FASK	TITLE	a T	S	ENCC	ENG 1H	690	RATIO	Š	X 7 3 6 0 0	1505 2051
(3591403	COMBAT DAMAGES AND LOSSES DATA ANALYSIS	 .	e c	60	8.0	151.0	.02379	6,	5.5	•
	3671791	G TESTS		3.6	: 6			.01943		3.5	
	53255	INTEGRATED AIMFRAME NOZZLE TESTING TECHNIQUES	- - ^	ر • ا د و و د د				19067	11.0	3.653	
	2220301	LCW COST RESOLVERS	۰~	150.0				.00765	;;	. 92	Š
	2260101	AUTUMATIC FERRALY FULLOWING	~ .	ć <u>.</u>	9.	•		.07.03	. :.	6	12.
	2190763	ESPUNSE ROPERTIES OF NOSE CAPSUL	, ~					.00528	; ;	92	50.
	2250853	ER SELF-URGANIZING SUNTROL		•		0.3		.00521	4	6	58.
	102 C6 56	STRUCT	~ ~	, 4 0 c	•	•	•	88400	6	8.	. 5
•	3553200	VALYSIS OF FLOW! VEHICLES	v ^	20.0				64400	9 4	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	933
	4250102	ONIC AND REENTRY	~		6.3	• •	• •	.06361		9.6	
	*******		•		•		•••••	•	••••••		•
	50639981	PEED AERODYNAMIC ANALYSIS METHODS	-	.2**0	n :	1.0	5.533	.00363	-	7.931	•
•	00106961	ISHIOK LOING GRAR SYS FOR ARTICULA AND VAN OR ADVANCED V	~ ~		٠,٠	•	16.7	76600.	•	8.263	•
	3222362	Y POWER SUPPLY	, ,,	, o. x.		0	3.260	.03324		8.946	1563.4
	136616-12	SIS OF	~	٥	ر د د	•	2.211	.20322		9.156	•
_	82263355	I GASSTANTIC TECHNICOM AL ESABOY DELIVERY	4	ی د د	٠		0.038	.00314	-	4.445	•
_	13090403	IN ACCOUSTIC EUDIVALENCE	~	3.0			3.285	.00367		162.6	• •
	2511526	STATE ELECTRICAL MULTI	~ 1	0.761	9.0		3.635	.03306		10.397	•
-	13471705	AL CUA	٧,	2,40	* 4 3 c	•	3.229	53	•	13.626	•
_	12251101	1 3	۰,	2.6			3.287	38		11.568	
	13755562	2	7	250.0	C1	•	3.794	S		12.362	•
	13420305	ABLE		104.0	٠, د		0.313	8	•	12.672	•
	1291661	7 1	⊸ ~	,	ۍ به د د		641-0	88		12.821	٠.
	13473330	7		3.0	200		3.238	38		13-615	•
-	:0116128	ີ່ວ	~	2000	1.0	3	2.522	.00246		14.138	•
	12622228	ا الا لا	٦ ،	0 0	۳ v	•	971.0	36	•	14.266	٠.
	13150203	A	۰~	5.0	. ~		3.156	33		14.832	• •
		FLIGHT ACFERENCE TECHNIQUE	~	•	3	9.0	2.0.0			14.849	• •
•	3522304	ALRO MECHANICAL PROPERTIES OF EJECTION SEATS	~ .	•	•	æ :	0.050	8	•	14.899	•
	4715201	JET AZII FAR ZOISE AZARTSIS	~ ~	20.0	ه ۸		3.572	\$1266		15.271	• •
	653200	TEXTILE PARACHUTE SIMILARITY LANS	~	0.42	2.0	:	0.00	6		15.836	•
		DISPERSION STRENGTHENED METAL STRUCTURES	~ •	5,00	8.0	1.2	7.177	8	•	16.613	٠.
	4250101	ACCOLEMENT OF LATER AND ALL TON METHODS ACROSPACE VEHICLE CRUE STATION CRITERIA	٧		2		3.34	10700		10.460	• .
		CUMPUTERIZED STRUCTURAL ANALYSIS METHODS	~	6,0	6.0	1.5	9.40	8		17.692	•
		HYPERSONIC BOUNDARY LAYER PROPERTIES	~ .	0.00	 	4.0	3.311	ó	•	16.003	٠.
_	472.400	JPTIMIZATION OF DV AMICS DATA	, ~	7.7	ه د	• •	2.241	.00172		18.655	: :
	4250301	PASSIVE DEFENSE FOR PERSONNEL PROTECTION	~	157.5	8.0	2.2	7.319	ò	•	18.974	
-		A COMBONATION TO COMPANY OF COMPANY OF COMPANY	~ -	2°5	3,	9.0	51.5	ŏ	•	19.117	
	3571495	LUAD CRITERIA SIMULATIO'S TECHNIQUE	٠.	,		0 0	183	90100		19.467	•
- •	201922	EDBACK FR LATERAL-DIRECTIONAL	~	33.0			3.414	19100	5531.4	19.001	6369.8
•		CHARCTRISTCS OF HIGH SPO CONFIGNT	٠,٧		5	7:5	3.358	ő	•	20.239	Š.
_	3641022	CONTRACT OF THE CONTRACT OF THE VEHICLE OF THE VEHI	~ ~	, ,	٠,	4 6		65100		23.323	97
	(431324.)	LIMI IAAV VEHICLE SVATHESIS	. →		:			ŏ	131.	20.982	^
	347-20:	SURFREAT OF STAUCTURAL R	-	0.67	9.0	3.8		15100	231.	21.216	À.
	12221225	S PIVOT REAVINGS ECHATED DATA SYSTEM-SIGNAL R	~ ~	200		7.7		64100	361.	21.471	-
_	4010014	PROCATIVS CHYO REFPISERAT	۱ ۸		3	3.5		.02146	56	22.256	: -
_ •	62221333	Z HIGH TEMPERATURE SEMICON	٠		6.5	0.3		ó	1.4269	22.363	9C01.8
	35255	+ SI AK WATES ESCAPE CAPABI	~~		•	•		200.43	317.	23.000	4.5448
~ •	13553333	DENSITY VISCOUS CASOYNAMICS	~		ر د د	٠. د.		.00135	٠.	23.153	8559.1
7	14.70.204	SOCRACE MEMICA A LOGUE CRACE			7.0				: 2	430678	00000

A

41

5628.7 5628.7 5628.7 56050.0 56050.0 5666.2 5666.2	2223. 2233. 2233. 223. 255.	88564.8 9977.5 9977.5 9907.0 103156.6 103156.6 110977.4 111256.3 111256.3 111646.8 111646.8	
20000000000000000000000000000000000000	22.469 22.463 22.256 22.469 22.469 23.469	200 10 10 10 10 10 10 10 10 10 10 10 10 1	22/4/20 22/4/4 22/4 22
	44444444444444444444444444444444444444		101822.7 1105372.7 1105372.7 1105372.7 111112.7 111112.7 11112.7 11112.7 1112.7 112.7 112.7 112.7 112.7 113.
7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.			00000000000000000000000000000000000000
			10000000000000000000000000000000000000
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			00000000000000000000000000000000000000
		# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000
	· manadamina Mana	เอ็ครัดนักษานั้น ก็ค่นได้	POSTERNAMENAE DIN NO BENESTANCIANCE PITTE NO BENESTANCIANCE PITTE NO BENESTANCIANCE PITTE NO BENESTANCIANCE PITTE NO BENESTANCE PITTE NO BENESTANC
	,		ACUNERGE WAS DUALO BONDA COUNTRACTOR COCCOC
FREST LANTIL TO TANGED TO THE STATE	PARLIMIAAN VEHICLE SYNTHESIS MENSUKERIN UN STRUCTUMAL RESPONSE MING PIVUT REARINGS MINTGRAFED DATA SYSTEM-SIGNAL MINTGRAFED DATA SYSTEM-SIGNAL MINTGRAFED DATA SYSTEM-SIGNAL MINTGRAFED DATA SYSTEM-SIGNAL MINTGRAFED THERMAL CONTROL MINT SI ME RAFES ESCAPE CAPABILITY MINTER THERMAL CONTROL MINTSTRUCTURE SASONWARTES SAGREFATOR CAMPRIES MINTER SIGNAL SASONWARTES MINTER SAS	ACROSPACE VEHICLE LOADS CRITERIA SUNC LOAD AUD RESPONSE RECEDERE SUNC LOAD AUD RESPONSE RECEDERE 2 ACOUSTIC FATIOUE PREDICTION AUD CONTROL UP STRUCTURAL VIBRATIUM 2 PREDICTION AUD CONTROL UP STRUCTURAL VIBRATIUM 2 ARCRAFT THERAAL CHVIROL THERAAL APPLICATION AND CONTROL FAILURE DATA COMPILATION AND REDUCTION V/STOL FE GENT CONTROL OF THRIZATION TACCE CONTRANTANT MANAGEMENT TACE CONTRANTANT MANAGEMENT TARRAME REARING DESIGNERS HANDBOOK STRUCTURAL FATIGUE DESIGN CRITERIA DEVLEMNT OF DYNAHIC WEASURMINT AND ANALYS SYSTM 2 VACUUM MEASUREMENT FECHNIQUES 2 VACUUM MEASUREMENT FECHNIQUES 2 AA DTA SUNG FR V/STL SUN NO SPRSNIC ARCRET 2	ES 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

41

The second secon

ੁੰਮੂਰ

Figure 12. Sample Annual Report

16 APR 68	DVERALL	R A N	5.1	31	2		
	O BEST	T.		-	~		
	54680	E461H	3.80	3.21	7.50		•
	SEATURE VE	ENGC	09.5	3.10			
	433	C+S	103.33	53.66	116.07	•	· c
646.		C80	3.2352	1. 248.1	1000	1047-6	.0 .0 .0
	CLES	ိ ပ	35.	•		·.	TETAL
ANNIJAL GUTPUT	LIGHT VEHI	66 00	• 50	;		•\$0	PROJ
	STRUCTURAL TESTING OF FLIGHT VEHICLES	. 12-1	GIT THE TO THE THE GUILT	L RESPONSE	STRUCTURAL TESTING CRITE	THERMAL APPLICATION AND	70.40
NO151010	. 171	;					
	SINUCIUNES 518			NONSEL 0203	NONSEL 0303	NCNSEL 0400	

Figure 12. Sample Annual Report

•		100	
16 APA 68		0 0 0	
91	•	ASSOCIATED 1498 WORK UNITS 2 003 305 30	
	•	CATEO	
AR 27	•	\$ 20 00 00 00	
•	S .	200	
	245 ¥ £ 3		
	SUPPORT OF SYSTEMS 05 G& G? D8 39 13 11 12 13 6 .6 .6 .6 .6 .8 .0 .9 .6 .9 .6 .0 C2 G2 G2 O4 O2 C2 O4 O3 C2 O4 O3	# 0 0 4 8 * * * * * * • 0 0 # H	
	20 20 20 20 20 20 20 20 20 20 20 20 20 2	Á	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100.00 0.00 0.00 1.00 1.00 1.00 1.00 1.	
	6. 4.0 0 • 0	0 1	
	\$ 9 0 0 • 0		
ONS E	S E F		
RDE FY 1969 FINAL REPORT MEASUREMENT 3F STRUCTURAL KESPONSE		~ · · · · · · · · · · · · · · · · · · ·	
TURAL	101 1	.3002	
STRUC	§ • ် ၁ • • €	> ac de ce ac de ce	
, A	014 015 018 019 020 091 101 014 015 018 019 020 091 101 08 08 09 09 09 09	11 STEP 1	
196 MENT	018	w C O	
E FY A SURE	08.15 14 015 • 9 • 8	115.53	
84 # 17 m	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~ ∪ ⊃	
ပ	03 05 E 0	* * * * * * * * * * * * * * * * * * *	
TASK 13470200		2	
¥	4 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	3 () () • () • ()	
7 4 5	73.8 10.8 10.2		
	SUPPORT UF TECH 001 002 004 134 007 008 009 JIC 49 49 40 48 49 49 49 49 002 309 305 002 005 UCE 303 203	\$ 4 2 5 5 5 7 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	
7	50.00		
61V1S1CN 1	10 06 Sub ,	3 + 2 0 0 0 E B B B B B B B B B B B B B B B B	
5	T S	w w	

		212
AR 16	EB S	ASSOCIA: FD 1498 WORK UNITS 005 CU7 009 001
	SYSTEMS .	00 10
		#0 *000~
	SUPPORT OF 05 09 15 11 12 13 14 17 18 17 18 17 18 15 15 05 05 05 05 05 05 05	
		+000H
	5 de 5	
TERIA		F
STRUCTURAL TESTING CRITERIA	•	1
STRUCTURAL		# C C C
326	7 TECH 315 518 0 64 .8	
TASK 13476306	003 003 000 000 000 000 000 000 000 000	\$ 4 . • 60 • 60
€ ♥ 1:	\$UPPORT OF TECH 061 002 004 010 013 014 015 018 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** ****
 	61 357 5 02 039	
01715164	100 400 400 400 400 400 400 400 400 400	10 10 10 10 10 10 10 10 10 10 10 10 10 1

Figure 13. Simple in Report

STRUCTURAL TESTING CRITERIA AEROSPAGE VFHICLE LOADS CRITERIA AEROSPAGE VFHICLE LOADS CRITERIA AIRCDAGS AND LOADS CRITERIA AIRCDAGE SAND LOSSES WATA AVALYSIS STUCTURAL FATIGUE ANALYSIS WETHODS COMMAT DAMACES AND LOSSES WATA AVALYSIS COMMAT DAMACES ANALYSIS OF FLOHT VEHICLES INVES UP INIT AND EXHST NIZLE COMPT PERFORMANC INVESTIGATION OF AIRFRAME INLET INTERACTION KNYSSTIGATION OF AIRFRAME INLET INTERACTION KNYSSTIGATION OF AIRFRAME INLET INTERACTION KNYSSTIGATION OF AIRFRAME INCENTION KNYSSTIGATION OF AIRFRAME INCENTION KNYSSTIGATION OF AIRFRAME INCENTION KNYSTOL FLIGHT WIRECTOR COMPUTER DEVELOPMENT ARDELST ON STABILITY AND CONTROL STABILITY AND CONTROL ANALYSIS ND DIA DULPMINT	VEHICLE LOADS OF VEHICLE LOADS OF VEHICLE LOADS OF STAIN OF STAIN OF A LAFFAME TON OTHER A LA
ACRUDYNAMIC CONTROLS STUDYNAMIC CONTROLS FLOAT CONTROLS FLOAT CONTROLS FLOAT CONTROLS HANDLING LUALITIES REQUIRENENT ESTABLISHED HANDLING LUALITIES INVESTIGATION NEW LUW GST FLGHT KFNCE STABILIZATION SYSTEM LUW COST RESULVERS SULID STATE AIR DATA COMPUTER INTEGRATEU DATA SYSTEM-SIGNAL FORDELLANT FLOW PANAGENT TECHNOLOGY PROPELLANT FLOW PATE MEASUREMENT PROPELLENT FLOW PROPERTY PROPERTY FLOW PROPERTY FLOW PROPERTY PROPERTY FLOW PROPERTY FLOW PROPERTY PROPERTY FLOW PROPERTY F	IIC CONTROLS IILTY AND COUNTROLS CUALLITES REQ CUALITIES INV CUALITIES INV CUALITIES INV CUALITIES INV CUANTRE ST RESULERS IT ELEM PATS IT FLEM PATS
ARCHITERLICA STILL INSTANLITY PREDUCTOR AND CATCATA PARCHINA STILL INSTANLITY PREDUCTION AND CANTROL OF STRUCTURAL VIBRATION PARCHINA PREDUCTION AND CUNTROL OF STRUCTURAL VIBRATION OF PRED AN PREV OF FRICT INDUCD DYNAMC LOD PROLHS STACKLUPMENT ACCRETARED ENVIRONMENT TEST METHODS OWN TABLE OF VIRONMENT TEST METHODS SHOULD FECHNIQUES SHOULD FECHNIQUES SHOULD FECHNOLOGY WING PIVOL BEARINGS HING PIVOL BEARINGS AND SEALS ACTORED TO STACKLUP SEALS AND SEALS	JAN TO LONG AND

AFFOL-FAISTING FACILITIES ROE 1969 FACILITY UTILIZATION REPORT

				69	7C 27	- BY FISCAL	72 72	13
0100 WING TUNNEL, HYPERSCNIC 13661601 SIERON T. DECAMP R.	16AS-DYNAH1C 55006	(AN 05 -		,	c	r3	2	0
		TOTAL	HOURS	•	0	ပ	30	0
C2CO MING TUNNEL» HYPERSONIC 13660303 SPEREDA DOV 13661803 SICRO, T. DECAMP R 14260300 HILLSAMER V'Y E.	CAS-DYNAMIC 52637 55006 53061	4 (XX			900	70 n	O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	900
		TOTAL	HOURS	,	ა	701	808	e
030C WINC TUNNEL» SUPERSONIC 136616C2 SIFRON I. BURNETT	CAS-OYNAMIC	- 2 FT)			80	o	o	0
		TUTAL	HOURS	,	30	2	Ü	c
24C9 136636C9 136636C9 136607C9 136607C9 136603C9 136603C9 136603C9 136603C9 136616C1 136616C	(GAS-DYNAMIC 52639 52639 52639 52639	- PEBBLE	850)	10012	90000 N	0 20 00 21	00000 00000 00000	0000
		TUTAL	HOURS	-,	240	120	336	120
0500 STRUCTUMES TEST FACILITY 15470200 FEANNOW D D 13470300 NCNLE RUBERT A 13470400 RANSEY C 14470200 NCNLE PADDUX GENE C 14470200 NCNLE PADDUX GENE C 14470200 NCNLE PADDUX GENE C 14470400 A 10000 NOWARD A	(AE R U S P AC E S 4 6 8 U S 4 6 8 U S 4 6 8 U S 4 6 8 U S	VEHICLES)		9900.0	აიიანს ი	2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000 0	330 730 530
		TUTAL	HUURS	٠,	4080	2830	1033	1500
0501 INDUCTICA HEATING (9F) 13470400 NOILE RUPERT A	FACILITY 52367			,.	U	O	O	00+
		TUTAL	HOURS	~	3	د	ċ	707
0502 STRUCTURES TEST SENSUR 13470200 FEARNOW D-11	CEVELOPMENT F	FACILITY			v	ь	350	300
		TUTAL	HOURS	3	c	ن	350	330
0600 ENVIRUMENTAL RESEAUCH 13470400 HENLE REPLET A	LAHORATORY 52.67				· ·	٠	^	300
				•	,		•	***

SECTION IV

PROGRAMMING GUIDE

1. RUNNING THE PROGRAM

The following diagrams are included to facilitate proper setup of the program decks. The edit program is run first, and must execute with no error messages before a master file is built.

Following the successful completion of EDIT, the entire RDE1 ogram can be run in one pass. General instructions to the operator should be to mount the master file on logical 1, and scratch tapes on logical 7, 8, and 11. Note that 2 data cards precede the 90 sort control cards, and that the Facility titles are entered as data following the FACT routine.

2. PROGRAMMING NOTES

As with any program, certain pecularities arise within the code that can cause not only different results when running check cases, but also can cause program hangup. This section is supposed to resolve some of these difficulties.

- 1. To preclude the difficulties encountered with INTEGER type statements, all variables are implicitly typed. In addition, integer names are used for alphameric data.
- 2. If a variable is used in more than one routine, its Fortran name will always be the same in all the routines and COMMON statements.
- 3. The I-Format on this compiler allows left justified integers which do not necessarily fill the field. This fact is reflected in the way the input forms are designed.
- 4. EXEC calls a routine DATE, which, again on this system, returns in 2 words the day, month, and year. It is suggested that, if this feature is not available, a function DATE could be written which would read in this information. The date is printed on each report so that the user can always determine which is the latest production run.

EDIT

CARD ARRANGEMENT

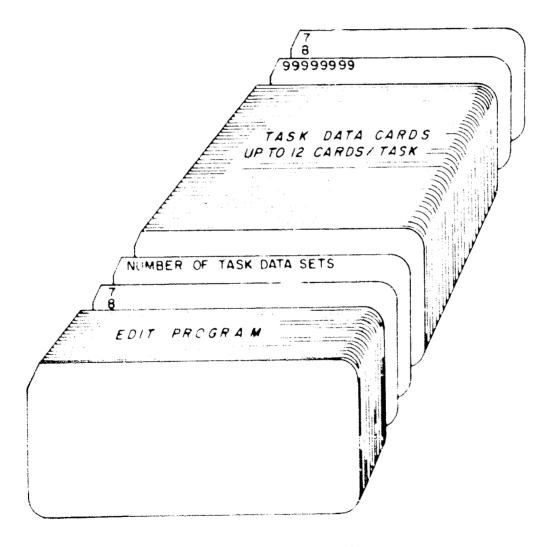


Figure 16. EDIT Deck Setup

RDE

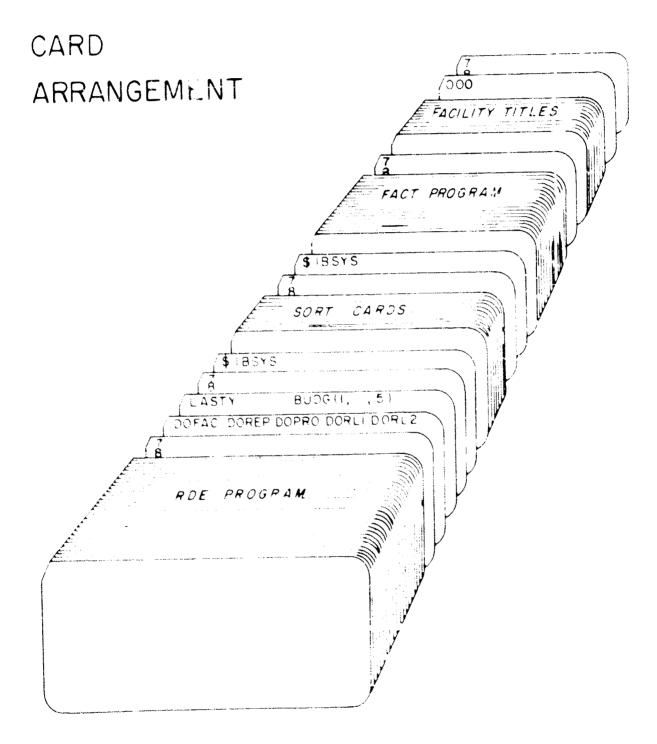


Figure 17. RDE68 Deck Setup

- 5. In many cases small numbers are added to computed quantities. This is to circumvent certain round off problems which developed during the debug phases of the program, and have nothing to do with the formulation.
- 6. Once the input data tape has been generated by EDIT, the rest of the programs run as a system. Between the final report routine and the facility listing program, there is a 7090 Sort, to arrange the facility data in its proper order. Subrouting FINAL writes a series of records for each task which uses facilities, each record pertaining to the utilization of a facility. The tasks being processed are in ascending order. The purpose of the 7090 Sort pass is to sort the records by facility, the tasks then being in ascending order by facility. It is this order the FACT routine requires to produce its report. As a matter of interest, the record to be sorted has the following construction:

WORD	DESCRIPTION
1	IOCS generated
2	Facility code
3	Task number
4 - 7	Task engineer's name
8	Task engineer's telephone extension
9 - 13	Facility utilization by year

- 7. The size of the dimensions of all variables both in COMMON and in DI-MENSION are the same in all routines in which they appear.
- 8. The program is designed to run on a 7040/7090 Direct Coupled System, where 7090 has only core to core communication with the 7040. The 7040 in turn handles all the I/O equipment including tape and pseudo tape data areas in the 1301 disk file.

Minimal configuration for a stand-alone 7090 with no disk would be 4 tapes: 1 for input, 2 for scratch files (preferably on different channels), and 1 for output. This is excluding normal input and output units, and systems and library files. The sort configuration will be a function of the order of merge desired.

ASD-TR-68-23

9. Running times are extremely variable when using the DCS, but a rough approximation will be given. The values are based on about 250 tasks being processed for 5 years.

	7090 Time	Lines Output
EDIT	1 MIN	4000
RDE	6 MIN	15000
SORT	1 MIN	300*
FACT	1 MIN	3500

^{*} Number of records sorted

SDIT.

```
2
      RTN TO PRE-EDIT RCE INPUT CATA
                                                                                Δ
C
                                                                                A
                                                                                    3
                                                                                A
      CCMMON /ED/ ERROR, IC, ICT(2), ITASK
      DIMENSION CAS(8), CLH(4), CSH(4), CS(2), DUM(15), EC(2), EI(2), ENC(8),
                                                                                Α
                 ENI(9), [AR(5), [FAC(6,8), [ALF(5), [S(15), [T(15), [TITLE(8),
                                                                                    6
                 LF(6,83),L[M(5),NAMP(4),NAMT(4),OCC(6,8),RWU(10),S(15),
                                                                                    7
                                                                                    R
                 T(15), TS(15), TT(15)
                                                                                A
      LUGICAL EPRORTHUP
                                                                                   10
                                                                                A
      DATA NSY, NTG, HDR/14, 116, T/
                                                                                A
                                                                                   11
      DATA (IALF(I), I=1,5)/1H1,1H2,1H3,1H4,1H5/
      DATA (LF(1, I), I=1,80)/
                                                                                   12
                     0100,0101,0200,0300,0400,0500,0501,0502,0503,0504,
                                                                                   13
                     0600,0601,0602,0700,0701,0800,0900,0901,0902,0903,
                                                                                Δ
                                                                                   14
     2
                                                                                A
                                                                                   15
                     2904,59#9/
                                                                                   16
      DATA (LF(2,1), [=1,80)/
                                                                                   17
                     1000,1100,1200,1300,1400,1401,1500,1500,1700,1800,
                                                                                   18
                     1900,1901,1902,1903,1904,65*0/
                                                                                   19
      DATA (LF(3,1), I=1,80)/ 83*0/
                                                                                Δ
                                                                                   20
      CATA (LF(4,1), I=1,80)/
                           3001,3002,3003,3004,3005,3006,3007,3008,3009,
                                                                                   21
     1
                           3010,3311,3012,68*0/
                                                                                A
                                                                                   22
                                                                                A
                                                                                   23
      DATA (LF(5,1), I=1,80)/
                                                                                   24
                     4001,4002,4003,4004,4005,4336,4007,4008,4009,4010,
                                                                                Δ
                                                                                   25
                     4011,4012,68*0/
     2
      DATA (LF(6,1), I=1,90)/
                                                                                   25
                                                                                Δ
                                                                                   27
                     5010,5011,5012,5013,5020,5021,5022,5030,5040,5041,
                     5050,5051,5052,5353,5054,5055,5056,5057,5058,5059,
                                                                                A
                                                                                   24
     2
         5000,5061,5062,5063 ,5090,5091,5092,5093,5100,5110,5111,5120,
                                                                                A
                                                                                   29
     3
                                                                                Α
                5130,5131,5132,5140,5141,5150,5150,5170,5180,5190,5200,
                                                                                   33
                5217,5211,5220,5230,5231,5232,5233,5234,5235,5236,5237,
                                                                                   31
                5239,5239,5240,5241,5242,5300,5301,5400,5401,17*0/
                                                                                Δ
                                                                                   32
                                                                                A
                                                                                   33
      DATA (1AR(1),1=1,5)/ 32,35,67,19,37/
                                                                                A
                                                                                   34
      BEGIN EDIT, BRING IN TASK COUNT
                                                                                Δ
                                                                                   35
C
                                                                                   36
      READ (5,39C) NT
                                                                                A
                                                                                   37
                                                                                Δ
                                                                                   38
      CALL CATE (ICT)
      IDP=C
                                                                                A
                                                                                   39
                                                                                   4)
      ERROR = . FALSE .
      IK=0
                                                                                   41
                                                                                A
                                                                                   42
C
C
      READ FIRST CO.
                                                                                   43
                                                                                Δ
                                                                                   44
      READ (5,397) ITASK, NAMT, IDIV, ISYM, LEXT, NAMP, LIM, AR, IC
                                                                                A
                                                                                   45
100
      ITAT=ITASK
                                                                                   46
                                                                                Δ
                                                                                   47
      IF (ITAT.LE.99999) ITAT=ITAT+100
      IF (ITASK.EC.99999999) GO TO 280
                                                                                A
                                                                                   48
                                                                                A
                                                                                   49
      IK=IK+1
      IF (IDIV.NE.IDP) GO TO 110
                                                                                Δ
                                                                                   50
                                                                                   51
C
      CHECK FOR ASCENDING TASK SEQUENCE
                                                                                   52
C
                                                                                   53
C
                                                                                A
      IF (ITAT-LT-ITP) CALL EWRT (14)
                                                                                Δ
                                                                                   54
      GO TO 120
                                                                                A
                                                                                   55
      ICP=IDIV
                                                                                   56
110
                                                                                Δ
```

ECIT.

120	ITP=ITAT	Ď.	57
	IF (IC.EQ.1) GO TO 130	Δ	i B
		Δ	55
	CALL EWRT (1)	•	
	GO TO 100	A	60
С		A	61
С	CHANGE IDIV FROM ALFA TO INTEGER	Λ	62
Č		Δ	63
137	00 140 [=1,5	A	64
	00 14. 1-1-5	Ã	-
C			65
С	CHECK FCR PROPER DIV. NR	A	60
C		Α.	67
	IF (IDIV-EC-IALF(I)) GU TO 15)	A	68
147	CONTINUE	Δ	69
		A	70
	CALL EWRT (2)		
150	IDIV=I	A	71
С	CHECK FOR AR FACTOR IN RANGE	Δ	72
	IR=AR+.0001	A	73
	IF (IR.GT. [AR(IDIV)) CALL EWRT (3)	Δ	74
_	in the one interest of the control o	A	75
C	0540, 66604.0.00	Ā	76
C	READ SECOND CD.		
C		4	77
	READ (5,400) ITK,ITITLE,CS,CLH(1),CSH(1),IC	A	79
	IF (IC.NE.2) GO TO 100	Δ	79
	IF (ITK.NE. ITASK) CALL EWRT (4)	Α	80
С	The state of the s	A	91
	0540 Tutop 60	Δ	
C	REAC THIRD CC.		92
С		A	83
	READ (5,410) ITK,IT,EC,CLH(2),CSH(2),IC	A	84
	IF (IC.NE.)) GO TO 160	Α	85
	IF (ITK.NE.ITASK) CALL EMPT (4)	Α	36
С	TO THE TOTAL ONCE THE	A	87
	DEAC EQUATE CO	A	98
C	REAC FOURTH CD.		
С		A	ЯQ
	READ (5,420) ITK,T,EI,CLH(3),CSH(3),IC	A	3.
	IF (IC.NE.4) GO TO 100	A	91
С		Д	92
Ċ	CHECK RII TOTAL ENG GREATER THAN .3	Δ	93
č		A	94
•	IF (EC(1)+EI(1).LT29) CALL EWRT (15)	Ā	95
_	IF TECTIFYETT INCLINES OF TAKE EARLY TEST		
C		Α	96
С	CHECK DOUBLE MANYEARS	Δ	97
С		A	98
	IF (2.*(EC(1)*EI(1))*.0001.LT.EC(2)*EI(2).OR.EC(1)*EI(1).GT.EC(2)*	4	99
	1EI(2)+.0001) CALL EWRT (5)	4	100
	IF (ITK.NE.ITASK) CALL EMPT (4)		101
r	I TIMENERIASNI CHEL ENET (4)		102
Ç	0540 51574 60		
C	REAC FIFTH CC.		103
C			174
	PEAD (5,430) ITK, IS, CLH(4), CSH(4), IC	A	105
	IF (IC.NE.5) GO TO 100	Δ	106
	IF (ITK.NE.ITASK) CALL EWRT (4)		137
С			108
Č	CHECK EIDET VD CONE LEVEL		109
C	CHECK FIRST YR CONF LEVEL		
С			110
	IF (CLH(4).GT7799) CALL EWRT (6)		111
C		Δ	112

FOIT.

C	READ SIXTH CC.	A 113
Č		A 114
•	DEAD IS AACL TWO CONT. IC	À 115
	READ (5,440) ITK,S,RHU,IC	
	IF (IC.NE.E) GC TO 1GC	A 116
	IF (ITK.NE., ITASK) CALL EWRT (4)	A 117
C		A 119
С	CHECK SYSTEMS + TECH ORD DATA	A 119
C		A 120
•	CO 16J 1=1,15	A 121
		A 122
	IF (IT(1).GT.NTG) CALL EWRT (7)	
	IF (T(I).GT.1.) CALL EWRT (7)	A 123
	IF (IS(I).GT.NSY) CALL EWRT (3)	4 124
	IF (S(I).GT.1.) CALL EWRT (8)	A 125
16C	CONTINUE	A 126
Ċ	WRITE CUT INPUT DATA + RPT FER THIS TASK	A 127
•		A 129
	IF (.NOT.HCR) GO TO 170	
	WRITE (8,296) IDT	A 129
	HDR=+NOT+HCR	A 130
170	WRITE (8,320) IDIV,ITAT,ITITLE,IR,LIM	A 131
	WRITE (4.31()	A 132
	ITC=C	A 133
	ISC=C	A 134
	DO 183 N=1,15	A 135
	TS(N)=FLOAT(IS(N))+.G1	A 136
18C	TT(N)=FLOAT(IT(N))=.GC1	A 137
	WRITE (8.22C) TT.TS	A 138
	WRITE (8,230) T.S	4 139
	WRITE (8,340)	A 140
		_
	WRITE (8,350) (CLH(N), N=1,4),CS(1),EC(1),EI(1),RMU	A 141
	WRITE (8,360) (CSH(N),N=1,4),CS(2),EC(2),E1(2)	A 142
	WRITE (8,370)	A 143
С	READ CONF LEVEL DATA	A 144
	DG 190 I=1.6	4 145
	DO 190 J=1.8	A 146
190	IFAC(1,J)=0	4 147
1 70		_
	CLB=FLCAT(IFIX(10.001*CLH(4)))/10.	4 148
200	READ (5,450) ITK,CL,DUM,IC	A 149
C		4 150
C	CHECK CL INCREASING BY .1	4 151
С		4 152
•	IF (ABS(CLB+.1-CL).LT0001) GP TO 210	A 153
	CALL EWRT (9)	A 154
	GO TO 100	A 155
212	ICL=CL+10.+.9C01	A 156
	CAS(ICL)=CLM(1)	A 157
	ENC(ICL)=CUM(2)	A 159
	ENI(ICL)=CUP(3)	A 159
	NV=C	4 167
		A 161
	CO 253 [=1,6	
	IF ((DUM(2*I+2).EQ.J.).AND.(DUM(2*I+3).EQ.J.)) GO TO 260	A 162
	NV=I	A 163
	IL=DUM(2+1+2)+,CC1+1,CUC1	4 164
	IF (IL.GT.6) GO TO 230	4 165
C		A 165
č	CHECK FOR VALID FACILITY CODE	A 167
č	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A 168
•		50

EDIT.

```
IFAC([, ICL)=DUM(2#I+2)+.0061
                                                                             A 169
                                                                             A 170
      DO 220 K=1,83
      IF (IFAC(I, ICL).EQ.LF(IL, K)) GO TO 24C
                                                                             A 171
      CONTINUE
226
                                                                             A 172
233
      CALL EWRT (17)
                                                                             A 173
С
                                                                             A 174
C
      CHECK FOR NON ZEPO OCC HRS ON FAC CODES
                                                                             A 175
C
                                                                             A 176
240
      OCC([, ICL]=DUM(2*1+3)
                                                                             A 177
      IF ((IF4C(I,ICL).NE.O).AND.(OCC(I,ICL).EQ.O.)) CALL EWRT (11)
                                                                             4 178
      IF ((CGC(I,ICL).NE.G.).AND.(IFAC(I,ICL).EQ.D)) CALL EWRT (12)
                                                                             A 179
253
      CONTINUE
                                                                             A 180
260
      IF (NV.LE.3) WRITE (8,383) ICL, CAS(ICL), ENC(ICL), ENI(ICL)
                                                                             A 191
      IF (NV.GT.C) WRITE (8,380) ICL.CAS(ICL), ENC(ICL), ENI(ICL), (IFAC(NR A 182
     1.ICL), GCC(NR, ICL), NR=1,NV)
                                                                             A 183
      ADJUST INITIAL RESOURCES IF FIRST YR IS NOT EVEN TENTH
C
                                                                             A 184
      IF (CLH(4)-CLB.LT..JU1.OR.IC.GT.7) GO TO 273
                                                                             A 185
      CEN=(CLB+.1-CLH(4))+1C.
                                                                             A 186
      CAS(ICL)=CAS(ICL)/DEM-.001
                                                                             A 197
      ENC(ICL)=ENC(ICL)/DEN-.001
                                                                             A 188
      FNI(ICL)=ENI(ICL)/DEN-.001
                                                                             A 189
270
      LB*CL
                                                                             A 190
      IF (ICL.LT.8) GO TO ZCC
                                                                             A 191
C
      WRITE INPUT DATA FOR THIS TASK ON MASTER FILE
                                                                             A 192
      ITAT=ITAT+ICIV#13CGGGGG
                                                                             A 193
      IF (.NCT.EFROR) WRITE (1) ITAT, NAMT, ISYM, LEXT, NAMP, LIM, IR, ITITLE, C A 194
     1S, EC, EI, CL+, CSH, IT, T, IS, S, RWU, CAS, ENC, ENI, IFAC, OCC
                                                                             A 195
                                                                             A 196
      GO TO 100
      IF (IK.NE.NT) CALL EMPT (13)
58:
                                                                             A 197
      IF (.NCT.EPROR) WRITE (6,460)
                                                                             A 198
C
                                                                             A 199
C
      WRITE TRLP
                                                                             C05 A
C
                                                                             A 201
      WRITE (1) (ITASK, I=1,240)
                                                                             A 202
      END FILE 1
                                                                             A 203
      REWIND 1
                                                                             A 204
      STOP
                                                                             A 205
C
                                                                             A 206
      FORMAT (1H153x26HRDE FY 1969 INPUT DATA39x2A6)
290
                                                                             A 207
300
      FORMAT (11-2/10HCDIVISION 12,7X4HTASKI1C,4X5HT1TLE4X8A6.4X2HARI3,7X
                                                                            A 20 A
                                                                             A 209
     118HLIMITED WAR CATA/11LX2HLW2X2HSW2X2HIN2X2HCS2X2HLG/11CX5(A2,2X
     211
                                                                             A 210
310
      FORMAT (2C x23HSUPPORT OF TECH OBJ$42x29HSUPPORT OF $Y$TEM$)
                                                                             A 211
      FORMAT (5H TO 15(1XF3.3),5X4HSYS 15(1XF2.21)
325
                                                                             A 212
      FORMAT (5F SUP 15(3H .F1.1),5X4HSUP 15(2H .F1.1)///
330
                                                                             A 213
      FORMAT (15x7FHISTORY21x1PHFY - 69 RESCUPCES/8x2H655x2H665x2H675x2
340
                                                                            A 214
     1H6817X2HCS4X4HENGC3X5HENGIH20X22HASSOC1ATED 1498 WORK,6H UNITS1
                                                                            A 215
350
      FORMAT (3H CL4F7.2, 8X3HPL13F8.1.15X13A51
                                                                            A 216
      FDRMAT (3H C$4F7.1.8X3HRL23F8.1//)
367
                                                                            A 217
      FORMAT (23HC CL VS. RESOURCE DATA35X21HF4CILITY UTILIZATION/3H C
377
                                                                            4 218
     1L5X2HCS3X4HENGC2X5HENGIH5X6[17HFACILITY OCC 1/27X6[17H CODE
                                                                           A 219
          HOUPSII
                                                                            A 220
380
      FORMAT (2H .11.3F7.1.2X6(15.F9.C))
                                                                            A 221
300
      FORMAT (18,3A6,A3,A1,2A5,4A6,5A2,F3.C,13)
                                                                            A 222
      FORMAT (18,746,44,5X,2F4,7,2X2F4,0,13)
400
                                                                            A 223
410
      FORMAT (18,1x1513,5x,2F4,0,2x2F4,0,13)
                                                                            A 224
```

EDIT.

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A 225
420	FORMAT (18,1X15F3.0,5X,2F4.0,2X2F4.0,13)	A 226
430	FORMAT (18,1x1512,30x2F4.0,13)	A 227
440	FORMAT (18,1X15F2.0,1CA3,8XI3)	A 228
450	FORMAT (18,F3.1,3F5.0,12F4.0,3XI3)	A 229
460	FORMAT (16HING INPUT ERRORS//4HGEOJ)	A 230-

EWRT.

	SUBROUTINE EWR? (I)	8	2
C C	RTN TO WRITE ERROR MSGS FOR EDIT PGM.	B,	4
C	KIN TO WRITE SHOW MISS FOR EUT: PGMS	8	5
·	COMMON /EC/ ERROR, IC, IDT(2), ITASK	8	6
	LOGICAL ERROR	В	7
	IF ([.EQ.1) WR(TE (6.103) ITASK.IC	В	8
	IF (1.EQ.2) HRITE (0,110) ITASK	8	9
	IF (1.EQ.3) WRITE (6.120) ITASK	8	10
	IF (I.EO.4) WRITE (6,130) ITASK,IC	В	11
	IF (I.EQ.5) WRITE (6,140) ITASK	8	12
	IF (I.EQ.6) WRITE (6,150) ITASK	В	13
	IF (I.EC.7) WRITE (6,160) ITASK	Ŋ	14
	IF (I.EQ.B) WRITE (6,170) ITASK	B	15
	IF (I.EQ.9) WRITE (6,180) ITASK,IC	8	16
	IF (I.EQ.10) WRITE (6.190) ITASK, IC	В	17
	IF (I.EQ.11) WRITE (6,200) ITASK, IC	8	18
	IF (I.EQ.12) WRITE (6,210) ITASK, IC	8	19
	IF (I.EQ.13) WRITE (6,220) ITASK, IC	₿	2C
	IF (I.EQ.14) WRITE (6,230) ITASK	8	21
	IF (I.EQ. 15) WRITE (6.240) ITASK	В	22
	ERROR=•TRUE•	8	23
_	RETURN	8	24
C		8	25
110	FORMAT (1HC2I10,2X20HCARD OUT OF SEQUENCE)	В	26
110	FORMAT (1+0110,2X21hINVALID DIVISION CCDE)	B	27
120 130	FORMAT (1H0110, 2X19HAR FACTOR TOO LARGE)	8 8	28
130	FORMAT (1H02I10,2X45HPROJ, TASK, OR SUBTASK DISAGREES WITH O1 CARD	8	29 30
140	FORMAT (1HC110,2X29HERROR IN DOUBLE ENGINEER DATA)	В	31
150	FORMAT (160110,2X29FERROR IN DOOBLE ENGINEER DATA)	8	32
160	FORMAT (1HO110,2X22HERROR IN TECH OBJ DATA)	8	33
170	FORMAT (1HC[10,2X28HERROR IN SYSTEM SUPPORT DATA)	8	34
180	FORMAT (1H02I10,2X31HCONF LEVEL DATA OUT OF SEQUENCE)	5	35
190	FORMAT (1HC2I10,2X21HILLEGAL FACILITY CODE)	В	36
200	FORMAT (1HC2110, 2X21HNO HOURS FOR FAC CODE)	8	3T
210	FORMAT (1HC2110.2X21HNO FAC CODE FOR HOURS)	B	38
220	FORMAT (1H02110.2X19HTASK COUNT IN ERROR)	8	39
230	FORMAT (1H0[10,2X23HTASK OUT OF SEQUENCE)	B	40
240	FORMAT (1H0110,2X36HTOTAL ENGINEERS LESS THAN .3 FOR RL1)	B	41
	END	В	42-

ASD-TR-68-23

MA

SIBLOR M4	22 APR 68	M4000000
SFILE M4	'UNITO1',K(1),READY,INOUT,BIN,BLK=256	M4000001
SFILE M4	"UNITCB",A(11,READY,INOUT,BCD,BLK=22	M4000002

ERROR

STEXT ERROR

		ENTRY	.OPTW.		0	2
BINARY CARD ID. EPROROO2 00000 000000000014 00001 00000000000 00002 0000000000	 • OPYW•	OCT DEC DEC END	00000000014 0PT ION 0 0	32 AND	33 D D O D	3 4 5 6-

EXEC.

```
C
       EXEC RTY TO DRIVE THE RDE PROGRAM
       LUGICAL DUFAC, DOREP, DOPRO, DORL 1, DORL 2
       COMMON /EX/ BUDG(5), DUFAC, DUREP, DOPRO, DORL1, DORL2, IDT(2), IY, NT, CFN
      1G, LASTY
C
                                                                                       7
C
      USB OF THE LOGICAL VARIABLES - WHEN SET TRUE --
                                                                                       8
C
                                                                                       0
C
      DOFAC - PRODUCE FACILITY LISTING TAPE AS INPUT TO SORT
                                                                                      10
       DOREP - PRODUCE BJ.BJ', TECH OBJ MATRICIES AND LIMWAR AND
C
                                                                                  A
                                                                                      11
C
                        WORK UNIT LISTINGS
                                                                                      12
C
      DORL1 - PRUDUCE OPTIMAL ALLUCATION USING ONLY RESOURCE LEVEL 1
                                                                                  •
                                                                                     13
C
      DORL2 - PRODUCE OPTIMAL ALLOCATION USING ONLY RESOURCE LEVEL 2
                                                                                      14
C
      DOPRO - PRODUCE SYSTEM AND TECH. OBJ. PROFILES
                                                                                  •
                                                                                      15
C
                                                                                  A
                                                                                     16
С
      TAPE UTILIZATION --
                                                                                  A
                                                                                      17
C
                                                                                  A
                                                                                      18
C
      LOGICAL
                                                                  USED
                                                                                  A
                                                                                     19
C
       TIVU
                                                                    IN
                                                                                      20
C
                                                                                     21
C
                INPUT MASTER FILE
                                                             EXEC.INIT.FNAL
                                                                                  A
                                                                                     22
C
         7
                WCRK TAPE
                                                             EXEC, INIT, RJP
                                                                                  A
                                                                                      23
C
                PRINT FILE FOR B(J) REPORTS
         4
                                                                                  A
                                                                                     24
                                                                  BJP
C
       11
                FACILITY DATA INPUT TO SORT
                                                       EXEC, BJP . SMLP, FNAL
                                                                                  A
                                                                                     25
C
                                                                                  A
                                                                                      26
      CALL DATE (IDT)
                                                                                  .
                                                                                     27
      REWIND 1
                                                                                  A
                                                                                     28
      READ (5,110) DUFAC, DOREP, DOPRO, DORL1, DORL2
                                                                                  A
                                                                                      29
      READ (5,125) LASTY, BUDG
                                                                                  A
                                                                                     30
      IF (LASTY.GT.5) LASTY=5
                                                                                     31
      WRITE (6,140) (1,8UDG(1),1=1,LASTY)
                                                                                  A
                                                                                     32
      CALL INIT
                                                                                  A
                                                                                     33
      REWIND 1
                                                                                  A
                                                                                     34
      REWIND 7
                                                                                     35
                                                                                  A
      CALL BJP
                                                                                     36
      IF (LASTY-LE-0) STOP
                                                                                  A
                                                                                     37
      REWIND 7
                                                                                  A
                                                                                     38
      DO 100 TY=1, LASTY
                                                                                  A
                                                                                     39
      REWIND 11
                                                                                  A
                                                                                     40
100
      CALL SMLP
                                                                                     41
      REWIND 1
                                                                                     42
      REWIND 11
                                                                                  A
                                                                                     43
      IF (LASTY.GT.1) CALL FINAL
                                                                                  A
                                                                                     44
      REWIND 11
                                                                                  A
                                                                                     45
      WRITE (6,130)
                                                                                  A
                                                                                     46
      STOP
                                                                                  A
                                                                                     47
C
                                                                                     48
      FORMAT (5L5)
110
                                                                                  A
                                                                                     49
      FORMAT (15.5E10.0)
FORMAT (4H1EOJ)
120
                                                                                  A
                                                                                     50
130
                                                                                  A
                                                                                     51
140
      FORMAT (5(1X6HYEAR =12.4X8HBUDGET =F7.0/))
                                                                                  A
                                                                                     52
                                                                                     53-
```

C

C

C

C

C

DATA.

```
BLOCK CATA
 COMMON /EX/ BUDG(5), DUFAC, DUREP, DOPRO, DORL1, DORL2, IDT(2), IY, NT, CEN
                                                                           В
                                                                               3
1G, LASTY
                                                                           В
                                                                               4
 COMMON /TASK/ BJ(16),BP(16),CLH(4),COST(2),CSH(4),CS(2),
                                                                               5
                                                                           8
                CSUM(6), EC(2), EI(2), IS(15), IT(15), ITITLE(8, 250),
                                                                               6
2
                LIM(5), NPH(14,28), RWU(10), S(15), T(15),
                                                                           3
                                                                               7
                TG(117)
                                                                           В
                                                                               8
 COMMON /FIVE/ CLY(250.6), ITP(250), LR(250,5), PER(250),
                                                                           B
                                                                               9
1
                TBJ(16), TGK(117)
                                                                           B
                                                                              10
 DATA CENG/12.7/
                                                                           В
                                                                              11
                                                                           B
                                                                              12
 TBJ=TIME FOR SYSTEM, COMPLETION
                                                                           R
                                                                              13
                                                                           в
                                                                              14
 DATA (TGJ(1),1=1,16)/2+2.,3.,5+2.,4.,2+2.,4.,3.,4.,2+0./
                                                                           B
                                                                              15
                                                                              16
                                                                           В
 TCK=TIME FCR TECH UBJ COMPLETION
                                                                              17
                                                                           A
                                                                              18
 PATA (TGK([],[=1,:17]/2.,9.,2.,5.,2.,2.,6.,2.,3.,3.,3.,3.,3.,
                                                                           В
                                                                              19
1
                        3*2.,11.,3.,4.,2.,2.,6*3.,3*2.,6.,6.,2.,
                                                                           8
                                                                              20
2
                        9.,6.,7.,6.,7.,6.,2.,3.,2.,3.,3.,6.,2.,
                                                                           R
                                                                              21
3
                        5.,3.,3.,2.,3.,2.,6.,2.,3.,8.,2.,6.,3*3.,
                                                                           R
                                                                              22
4
                        2.,6.,3*2.,6.,5.,4.,4.,3.,
                                                                              23
5
                        4.,3.,2*2.,6.,2.,6.,2.,4.,7*2.,3.,4.,6.,
                                                                           A
                                                                              24
6
                        2 - 1 4 - 1 2 - 1 2 + 4 - 1 2 - 1 3 - 1 4 - 1 6 - 1 4 - 1 4 2 - 1 2 + 3 - 1
                                                                           8
                                                                              25
                        2.,6.,2.,2.,3.,2.,2.,3.,2.,0./
                                                                           В
                                                                              26
 DATA (NPH(1,K),K=1,12)/
                                                                           B
                                                                              27
1 60BSTRUCTURAL TESTING OF FILIGHT VEHICLES
                                                                           B
                                                                              28
2 60HSTRUCTURAL DESIGN CRITERIA
                                                                           B
                                                                              29
3 6 3 HSTRUCTURAL DESIGN CONCEPTS
                                                                           В
                                                                              30
4 6 3 HSTRUCTURAL ANALYSIS METHODS
                                                                           B
                                                                              31
5 6 CHAERODYNAMICS AND FLIGHT MECHANICS
                                                                           B
                                                                              32
6 60HEXPERIMENTAL SIMULATION OF FLIGHT MECHANICS
                                                                              33
 60HFLIGHT PATH ANALYSIS
                                                                           R
                                                                              34
8 6 THAIRFRAME - EXHAUST NOZZLE INTEGRATION
                                                                           В
                                                                              35
9 60HCONTROL DISPLAY
                                                                           В
                                                                              36
A 6-3HSTABILITY AND CUNTROL INVESTIGATIONS
                                                                           B
                                                                              37
B 6 SHCONTROL DATA SYSTEM AND INSTR. TECHNOLOGY FUR ADV. VEHICLES
                                                                              38
C 60HSTORED ENERGY DATA SYS + INSTR. FOR AEROSPACE VEHICLES
                                                                           A
                                                                              30
 DATA (NPH(1,K),K=13,26)/
                                                                           B
                                                                              40
1 60HFLIGHT CONTROL EQUIPMENT TECHNIQUES
                                                                           В
                                                                              41
2 60HFLIGHT CTL SYS TECH FOR STABILIZATION + CTL OF ADV VEHICLES
                                                                           R
                                                                              42
3 63HDYNAMIC PROBLEMS IN FLIGHT VEHICLES
                                                                           В
                                                                              43
  60HAERO - ACOUSTIC PRUBLEMS
                                                                           R
                                                                              44
5 69HDYNAMIC MEASUREMENT AND ANALYSIS TECHNOLOGY
                                                                           8
                                                                              45
6 63HHIGH INTENSITY SOUND ENVIRONMENT SIMULATION
                                                                           8
                                                                              46
7 60HENVIRONMENTAL INTERACTIONS
                                                                           В
                                                                              47
8 6 HBEARINGS AND SPECIAL COMPONENTS
                                                                          A
                                                                              48
9 67HCREW ESCAPE FOR FLIGHT VEHICLES
                                                                          В
                                                                              49
A 63HMECHANICAL SUBSYSTEMS FOR ADVANCED FLIGHT VEHICLES
                                                                          B
                                                                              50
B 60HCREW STATION RESEARCH FOR AEROSPACE VEHICLES
                                                                          8
                                                                              51
C 60HCRYOGENIC COOLING TECHNOLOGY
                                                                          В
                                                                              52
D 69HPERFORMANCE + DESIGN OF DEPLOYABLE AERODYNAMIC DECELERATORS
                                                                          В
                                                                              53
E 60HENVIRONMENTAL CONTROL
                                                                             54
                                                                          В
 END
                                                                          в
                                                                              55-
```

INIT.

```
SUBROUTINE INIT
                                                                                  С
C
       RTN TO PRODUCE INITIAL RPTS + DATA NEC. FOR FURTHER COMP.
C
                                                                                  C
C
      DIMENSION CE(16), COLS(16), CAS(3), ENC(8), ENI(8), NAMP(4), NAMT(4)
                                                                                  C
      LOGICAL DOFAC, DUREP, DOPRO, DURL1, DURL2
                                                                                  C
                                                                                      7
      COMMON /EX/ BUDG(5), DOFAC, DOREP, DOPRO, DORL1, DORL2, IDT(2), IY, NT, CEN
                                                                                  C
                                                                                      8
     1G, LASTY
                                                                                      0
      COMMON /BJTG/ CAVG(16)
                                                                                  C
                                                                                     10
      COMMON /TASK/ BJ(16), BP(16), CLH(4), COST(2), CSH(4), CS(2),
                                                                                  C
                                                                                     11
                      CSUM(8).EC(2),E1(2).IS(15),IT(15),ITITLE(8,250),
                                                                                  C
                                                                                     12
     2
                      LIM(3),NPH(14,28),RWU(10),S(15),T(15),
                                                                                  C
                                                                                     13
     3
                      TG(117)
                                                                                  C
                                                                                     14
      DATA (CE(1), COLS(1), [=1,16)/32+0./, IPT, IPC/2+0/, II/1H /
                                                                                    15
      IF (DOREP) WRITE (8,230) IOT
                                                                                  C
                                                                                    16
      IF (DOREP) WRITE (6,220) IDT, (K,K=1,16)
                                                                                  С
                                                                                     17
      NTSO
                                                                                     18
C
                                                                                     19
C
      READ IN DATA BY TASK
                                                                                     20
C.
                                                                                     21
100
      FEAD (1) ITASK, NAMT, ISYM, LEXT, NAMP, LIM, IR, (ITITLE (J, NT+1), J=1, R), C
                                                                                    22
     15.EC.EI.CLH.CSH.IT.T.IS.S.RWU.CAS.ENC.ENI
                                                                                 C
                                                                                    23
C
                                                                                 C
                                                                                     24
      IF (ITASK-EQ-9999999) GO TO 190
                                                                                     25
      NT aNT+1
                                                                                 C
                                                                                     26
C
                                                                                 C
                                                                                     27
      WRITE LIMWAR DATA
                                                                                 C
                                                                                     28
r
                                                                                 C
                                                                                     29
      00 110 J=1.5
                                                                                 C
                                                                                     30
      IF (LIM(J).EQ.II) GO TO 115
                                                                                 C
                                                                                    31
      IF (COREP) WRITE (3,240) ITASK, LIM
                                                                                 C
                                                                                    32
      60 TO 120
                                                                                 C
                                                                                    33
110
      CONTINUE
                                                                                 C
                                                                                    34
120
      IF CITASK/10003.EQ.IPT) GO TO 140
                                                                                 C
                                                                                     35
      IPC=IPC+1
                                                                                 С
                                                                                    36
C
                                                                                 C
                                                                                    37
C
      CHECK THAT NUMBER OF PROJECTS LESS THAN 28
                                                                                 C
                                                                                    38
C.
                                                                                 C
                                                                                    39
      IF (IPC.GT.23) GO TO 210
                                                                                    45
      TPT=ITASK/10000
                                                                                 C
                                                                                    41
      CO 135 K=11,14
                                                                                 C
                                                                                    42
C
                                                                                    43
C
      RUILD ARRAY OF PROJ ENGINEERS
                                                                                 C
                                                                                    44
C
                                                                                 C
                                                                                    45
130
      NPH(K, IPC) = NAMP(K-10)
                                                                                    46
С
                                                                                    47
C
      DEVELOP BJ ROW AND COL. SUMS
                                                                                 C
                                                                                    48
C
                                                                                    49
14C
      RESO.
                                                                                 C
                                                                                    50
      RSUM=D.
                                                                                 C
                                                                                    51
C
                                                                                 C
                                                                                    52
C.
      ZERO BJ ARRAY
                                                                                 C
                                                                                    53
C
                                                                                 C
                                                                                    54
      00 150 1=1,16
                                                                                 C
                                                                                    55
150
      BJ([)=·).
                                                                                    56
```

INIT.

	·		
	DO 160 I=1,15	C	57
	IF NIS(I).50.0) GD TO 160	C	58
	[8-1S([)	С	
	BJ(IB)=S(I)	C	
	RSUN=RSUM+S(I)	C	61
	REARE+1.	С	62
	COLS(IB)=COLS(IB)+BJ(IB)	C	63
	CE(IR)=CE(IR)+1.	C	64
160	CCNTINUE	С	65
	RAVG=RSUM/RE	C	66
С		C	67
C	WRITE BJ DATA	C	68
C		С	69
	IF (DOREP) WRITE (6,25C) ITASK.BJ.RAVG	C	70
С		C	71
С	CCNVERT ENGINEERS TO EQUIVALENT \$	C	72
С		С	73
	DO 17º K=1,2	C	74
170	COST(R) = CS(K) + CENG = (EG(K) + EI(K))	C	75
	DO 18C K=1,8	C	76
180	CSUM(K)=CAS(K)+CENG4(ENC(K)+ENI(K))	С	77
С		С	78
C	WRITE TASK RECORD	C	79
С		C	80
	WRITE (7) ITASK.IR.ALH(4).CS.EC.EI.COST.CSUM.BJ.IT.T.RWU	C	81
	60 10 100	C	82
С		C	83
C	END READ LOOP	C	84
C		C	85
C	WRITE COL. SUMS	C	86
С		C	87
190	IF (DOREP) WRITE (6.26C) COLS	C	88
C		Č	89
C	COMP AND WRITE COL. AVGS	C	90
С	DO 200 I-1 1/	Č	91 92
200	00 200 [=1,16	C	93
200	CAYG(1) *COLS(1)/CE(1)	Č	94
	IF (DOREP) WRITE (6,270) CAVG	Č	95
210	RETURN	Č	96
210	WRITE (6,280) STOP	č	97
С	STUP	č	98
_	FORMAT (1H148X15HROE 1969 BJ5X, 21H VERSUS SYSTEM MATRIX33X2A4/		99
220	1/65x7HSYSTEMS53x7HAVERAGE/3x4HTASK4x1617,3x6HACROSS//)	ň	100
230	FORMAT (1H16X4HTASK9X11HLIMITED WAR9X11HSPECIAL AIR9X12HINTERDICTI		161
230	10N7X5HCLOSE14X9HLOGISTICS15X2A6/42X7HWARFARE30X7HSUPPORT//)	_	162
240	FORMAT (5X18,11XA2,18XA2,19XA2,15XA2,20XA2)	_	163
250	FORMAT (1X18,3X16(5X1H.F1.1),3XF6.4)		104
260	FORMAT (1X131(1H-)/6H TOTAL7X16F7.2)	_	105
270	FORMAT (1X131(1H-)/9H VERT AVG4X16F7.2)		106
280	FORMAT (19H1NR PROJ EXCEEDS 28)		107
200	END		1CB-
	L.TW	-	

вур.

```
SUBROUTINE BUP
                                                                                  D
                                                                                      3
C
                                                                                  D
                                                                                      4
      RTN TO COMP. BJ' VALUES
                                                                                  D
                                                                                      5
      LOGICAL DOFAC, UDREP, DOPRO, DORLI, DORL2
                                                                                  n
      COMMON /EX/ BUDG(5), DUFAC, DUREP, DOPRO, DORL1, DORL2, IDT(2;, IY, NT, CFN
                                                                                 D
                                                                                  D
     1G, LASTY
      COMMON /BJTG/ CAVG(16)
                                                                                 D
                                                                                      9
      COMMON /TASK/ BJ(15),BP(16),CLH(4),COST(2),CSH(4),CS(2),
                                                                                     10
                                                                                  D
                      CSUM(3), EC(2), E1(2), IS(15), IT(15), IT(TLE(8, 250),
                                                                                  n
                                                                                     11
                                                                                  D
                      LIM(5), NPH(14,28), RWU(10), S(15), T(15),
                                                                                     12
                      TG(117)
                                                                                  n
                                                                                     13
                                                                                  D
      DIMENSION DMY(17), CJ(16), HK(117)
                                                                                     14
C
                                                                                 D
                                                                                     15
                                                                                  Ω
      CJ=SYSTEM WEIGHTS
                                                                                     16
C
                                                                                  D
                                                                                     17
      DATA (CJ(J), J=1,16)/.137,.015,.107,.122,.152,.073,.091,.076,
                                                                                 Ð
                                                                                    18
                                                                                  O
                                                                                     19
                            .070,.031,.343,.030,.046,.037,2*0./
                                                                                  D
C
                                                                                     20
      HKSTECH OBJ WEIGHTS
                                                                                  D
                                                                                     21
                                                                                  D
                                                                                     22
      DATA (HK(J), J=1,117)/.118,.049,.049,.015,.118,.152,.015,.083,
                                                                                  D
                                                                                     23
                                                                                  D
                                                                                     24
     1
                              .C83,.649,.152,.083,.152,.683,.C83,.049,
     2
                              .015,.118,2*.083,.118,.083,.049,.083,
                                                                                  D
                                                                                     25
     3
                              3 * . 0 4 9 , . 0 1 5 , 2 * . 1 5 2 , . 0 1 5 , . 0 8 3 , . 0 4 9 , . 0 8 3 ,
                                                                                  D
                                                                                     26
                             2*.049,.015,.049,2*.015,2*.118,.383,.049,
                                                                                  D
                                                                                     27
     4
     5
                              .083,2*.152,.049,.083,.049,3*.015,.118,
                                                                                  0
                                                                                     28
                              ·C15,·O83,2*·118,·152,3*·049,·015,2*·083,
                                                                                  0
                                                                                     29
                                                                                  n
                                                                                     30
                             2*.015,.083,.049,3*.015,
                              .049,.015,.015,.049,2*.015,.049,2*.015,
     8
                                                                                  D
                                                                                     31
                              2*.118,.083,2*.015,.083,.049,.015,.083,
                                                                                 D
                                                                                     32
     Δ
                              .049,3*.118,.083,.049,.083,.049,.049,
                                                                                 D
                                                                                     33
                              ...83,..015,..049,2*..083,.118,..015,.049,
                                                                                 D
                                                                                     34
     C
                             2*.083,2*.049,.083,.049,.083,.118,.083,
                                                                                 D
                                                                                     35
     D
                                                                                 D
                             6./
                                                                                     36
      IF (COREP) WRITE (6,28C)
                                                                                 n
                                                                                     37
      IF (DOREP) WRITE (8,210) 10T, (K,K=1,61)
                                                                                 D
                                                                                     38
                                                                                 n
                                                                                     30
      DO 120 T=1.NT
                                                                                 D
C
                                                                                     40
      READ A TASK
                                                                                 D
                                                                                     41
                                                                                     42
                                                                                 O
      PEAD (7) ITASK, IR, DMY, BJ, IT, T, RWU
                                                                                 0
                                                                                     43
      IF (DOREP) WRITE (6,270) ITASK, RWU
                                                                                 D
                                                                                     44
                                                                                 D
                                                                                     45
      DO 100 J=1,117
      TG{J}=C.
100
                                                                                 O
                                                                                     46
      00 110 J=1,15
                                                                                 D
                                                                                     47
      IF (IT(J).LT.1) GO TO 110
                                                                                 D
                                                                                     48
                                                                                 D
                                                                                     49
      IG=IT(J)
                                                                                 n
                                                                                     50
      TG(IG)=T(J)
                                                                                 0
110
      CONTINUE
                                                                                     51
      IF (COREP) WRITE (8,22C) ITASK, (TG(J), J=1,61)
                                                                                 n
120
                                                                                     52
      IF (DORFP) WRITE (6,230) IDT, (K,K=1,16)
                                                                                 D
                                                                                     53
      IF (DOREP) WRITE (8,24C) IDT, (M,K=62,117)
                                                                                     54
                                                                                 D
                                                                                 D
                                                                                    55
C
      REWIND DATA TAPE FOR SECOND PASS
                                                                                 O
                                                                                     56
```

BJP.

```
D
                                                                                     57
C
      REWIND 7
                                                                                      58
                                                                                  D
      NU 200 I=1,NT
                                                                                     50
                                                                                  Ω
      READ (7) ITASK, IR, DMY, BJ, IT, T
                                                                                     60
                                                                                  D
C
                                                                                     61
      CALC BJ'
C
                                                                                  n
                                                                                     62
Ċ
                                                                                  D
                                                                                     63
      DO 130 J=1.16
                                                                                  D
                                                                                     64
                                                                                  n
130
                                                                                     65
      8P(J)=0.
                                                                                  O
      RSUM=C.
                                                                                     66
      RESU.
                                                                                  D
                                                                                     67
                                                                                  D
      DD 140 J=1,16
                                                                                     68
      IF (BJ(J).LT..Cerl) GO TO 140
                                                                                  D
                                                                                     69
                                                                                  D
      BP(J)=BJ(J)
                                                                                     70
      IF (PP(J) \cdot GT \cdot CAVG(J)) \cdot BP(J) = BJ(J) + (1 \cdot + 2 \cdot 5 \cdot (BJ(J) - CAVG(J)))
                                                                                  Ð
                                                                                      71
      RSUM=RSUM+BP(J)
                                                                                  D
                                                                                     72
      REARE+1.
                                                                                  O
                                                                                     73
140
      CONTINUE
                                                                                  0
                                                                                     74
      RAVG=RSUM/RE
                                                                                  D
                                                                                     75
      IF (DOREP) WRITE (6,26C) ITASK, BP, RAVG
                                                                                  D
                                                                                     76
C
                                                                                  D
                                                                                     77
      DEVELOP BP*CJ TERM OF OBJECTIVE FUNCTION
                                                                                  D
C
                                                                                     78
C
                                                                                  D
                                                                                     79
      00 150 J=1,16
                                                                                  D
                                                                                     80
150
      BP(J)=BP(J)+CJ(J)
                                                                                  O
                                                                                     81
                                                                                  n
      DO 160 J=1,117
                                                                                     82
                                                                                  D
                                                                                     83
160
      TG(J)=0.
      RSUN=C.
                                                                                  n
                                                                                     84
                                                                                  O
                                                                                     85
      RESC.
      DO 180 J=1.15
                                                                                  0
                                                                                     86
                                                                                  D
      IF (IT(J).LT.1) GO TO 170
                                                                                     87
       IG=IT(J)
                                                                                  D
                                                                                     88
      TG(IG)=T(J)
                                                                                  Ð
                                                                                     89
170
      RSUN=RSUM+TG(IG)
                                                                                  D
                                                                                     90
      RESRE+1.
                                                                                  n
                                                                                     91
180
      CONTINUE
                                                                                  O
                                                                                     92
                                                                                  D
                                                                                     93
      RAVG=RSUM/RE
      IF (DORFP) WRITE (8.25C) (TG(J),J=62,117),RAVG,ITASK
                                                                                  D
                                                                                     94
                                                                                     95
                                                                                  n
C
      DEVELOP 1G*HK TERM OF OBJECTIVE FUNCTION
                                                                                  D
                                                                                     96
                                                                                  D
                                                                                     97
      DO 190 J=1,117
                                                                                  n
                                                                                     98
190
      TG(J) = TG(J) * HK(J) \cdot
                                                                                     99
                                                                                  D
      WRITE (11) ITASK, IR, DMY, BP, TG
200
                                                                                  D 100
                                                                                  D 101
      RETURN
                                                                                  D 1C2
C
210
      FORMAT (1H145X47HRDE 1969 GK VERSUS TECHNOLOGICAL GBJS MATRIX,5
                                                                                  0 103
     1H PT1 22X2A6//63X1CHTECH OBJS //2X4HTASK22X10(2H1 1,10(2H2 1,10(2H
                                                                                 0 104
     23 ),10(2H4 ),1)(2H5 ),3H6 6/9X61(1XI1))
                                                                                  D 105
220
      FORMAT (1X18,1X61F2.1)
                                                                                  D 106
       FORMAT (1H148X21HRDE 1969
                                       BJ PRIME9X20HVERSUS SYSTEM MATRIX, 24
230
                                                                                 D 107
      1X2A6//65X7HSYSTEMS53X7HAVERAGE/3X4HTASK,4X1617,3X6HACROSS//)
                                                                                  D 108
      FORMAT (1H145X47HRDE 1969
                                      GK VERSUS TECHNOLOGICAL OBJS MATRIX.5
240
                                                                                 D 109
      1H PT2 22X2A6//63X1CHTECH DBJS /2X,76X18(2H1 )/2X8(2H6 ),10(2H7 ),1 D 110
      20(2H9 ),10(2H9 ),12(2H0 ),8(2H1 )/1X56(1XII),2X7HAVERAGE3X4HTASK)
                                                                                 D 111
250
      FORMAT (2X56F2.1, F7.3, 3X18)
                                                                                 D 112
```

ASD-TR-68-23

BJP.

260	FORMAT	(2XI8,15F7.1,3XF6.4)				D 1	113
270	FORMAT	(1XI3,6X15A5)				0 1	114
280	FORMAT	(1H13X4HTASK20X29HASSOCIATED	1498	WORK	UNITS//)	D 1	115
	END					0 1	116-

```
Ε
       SUBROUTINE SMLP
                                                                                     2
C
                                                                                Ε
                                                                                     3
      RTN TO SIMULATE LINEAR PGM AND DEVELOP TASK RANK BY RDE
                                                                                 ε
C
                                                                                 £
      COMMON /EX/ BUDG(5),DOFAC,DUREP,DOPRO,DORL1,DORL2,IDT(2),IY,NT,CTN
                                                                                Ε
                                                                                 ε
     1G. LASTY
                                                                                     R
      COMMON /TASK/ BJ(16),BP(16),CLH(4),COST(2),CSH(4),CS(2),
                                                                                 Ε
                      CSUM(8). EC(2). EI(2). IS(15). IT(15). ITITLE(8.250).
                                                                                 E
     1
     2
                      LIM(5),NPH(14,28),RWU(10),S(15),T(15),
                                                                                Ε
                                                                                    16
                                                                                 Ε
                                                                                    11
                      TG(117)
      COMMON /FIVE/ CLY(257.6), ITP(250), LR(250.5), PER(250),
                                                                                Ε
                                                                                    12
                                                                                 Ε
                                                                                   13
     1
                      TBJ(16), TGK(117)
      DIMENSION ALAR(4).CL(2).CLP(250).CSP(250).DN(5).DT(4).
                                                                                 Ε
                                                                                   14
                      5CP(250),EIP(250), 1PRL(250), 1RAVK(250), LRP(250),
                                                                                 ε
                                                                                   15
                      NOH(3,5),08J(2),08JP(250),PART(5),PRL(250),
                                                                                 Ε
                                                                                    16
     2
                      PT(4), RATIO(250), T8(2)
                                                                                Ε
                                                                                    17
     3
                                                                                Ε
      DATA (DN(1), [=1,5]/ 30.,35.,67.,19.,37./
                                                                                    18
      LOGICAL DUFAC, DUREP, DUPRO, DURLI, DORL2
                                                                                 Ε
                                                                                    19
      LOGICAL WRITEL
                                                                                E
                                                                                    20
                                                                                Ε
                                                                                    21
                                       /18HSTRUCTURES
      DATA
            (NOH(1,1),I=1,5)
                                        18MFLIGHT MECHANICS
                                                                                Ε
                                                                                    22
     1
                                        18HFLIGHT CONTROL
                                                                                Ε
                                                                                    23
     2
                                                                                F.
     3
                                        18HVEHICLE DYNAMICS
                                                                                    24
                                        18HVEHICLE EQUIPMENT /
                                                                                £
                                                                                    25
      DATA IBLNK, ISNO/1H ,6HNONSEL/, MPR, MOV, MLB/4HPROJ, 3HDIV, 3HLAB/
                                                                                    26
                                                                                Ε
                                                                                    27
      IYBAR= IY+1968
                                                                                Ε
                                                                                    28
      YEAR=IY-1
                                                                                E
                                                                                    29
      DO 180 I=1,NT
                                                                                    30
      READ (11) ITP(1), IR, CLY(1,1), CS, EC, E1, COST, CSUM, BP, TG
                                                                                Ε
                                                                                F
                                                                                    31
      ID=ITP([]/100000000
                                                                                E
                                                                                    32
      GENERATE WEIGHTING FACTOR FROM TASK RANK IN DIV
                                                                                E
                                                                                    33
C
C
                                                                                Ε
                                                                                    34
                                                                                    35
      X=FLGAT([R-1)/(DN([U)-1.)
                                                                                Ε
      AR=EXP(-X++2)+.37
                                                                                ε
                                                                                    36
                                                                                Ε
                                                                                    37
      CALC COST AND GAJ COSF FOR EA RESOURCE LEVEL
                                                                                Ε
                                                                                    38
                                                                                Ε
                                                                                    39
C
                                                                                Ε
                                                                                    40
      DO 170 K=1.2
      PART(K)=1.
                                                                                Ε
                                                                                    41
      COST(K)=COST(K)+.OC1
                                                                                Ε
                                                                                    42
                                                                                Ε
                                                                                    43
      CLB = CLY(I, IY)
                                                                                Ε
                                                                                    44
C
                                                                                    45
                                                                                Ε
      FIND TB .LE. 12 YEARS
                                                                                Ε
                                                                                    46
C.
      T8(K)=0.
                                                                                1:
                                                                                    47
      CLA=CLNU(CLB,COST(K))
                                                                                Ε
                                                                                    48
100
      IF (T8(K).LT..1) CL(K)=CLA
                                                                                Ε
                                                                                    49
                                                                                Ε
                                                                                    50
      T8(K)=T9(K)+1.
                                                                                E
                                                                                   51
      IF (CLA.GE..B) GO TU 113
                                                                                   52
                                                                                Ε
      CLB=CLA
      1F (T8(K).LT.12.) GO TO 19C
                                                                                Ε
                                                                                   53
      IF (ABS(CL(K)-.8).GT..0001) GO TO 140
                                                                                Ε
                                                                                   54
110
                                                                                Ε
                                                                                   55
      C830.
                                                                                F
                                                                                   56
```

C	CALC & TO REACH .B IF REACHED THIS YEAR	E	57
C	00 120 1-2 7	E E	58 59
	00 120 J=2,7 JJ=9-J	Ē	6C
	IF (CLY(1,1Y).GT1*FLOAT(JJ)) GO TO 130	Ē	61
120	C8=C8+CSUM(JJ+1)	Ē	62
130	C83C8+10.*(.1*FLOAT(JJ+1)-CLY(1.1Y))*CSUM(JJ+1)	Ε	63
	PART(K)=C8/CUST(K)	Ε	64
	CS(K)=CS(K)+PART(K)	E	65
	EC(K)=EC(K)+PART(K)	E	66
	EI(K)=EI(K)+PART(K)	E	67
	COST(K)=C8	E	68 69
140	8P9UM=C. DO 15C J=1,16	E	70
	DEN*TRJ(J)-YEAR	Ē	71
	RPJ±0.	Ē	72
	IF (CEN.GTQ1) BPJ=BP(J)+T1M(T8(K)/DEN)	E	73
150	8PSUM=8PSUM+8PJ	E	74
	TG9UM=O.	E	75
	DO 160 J=1,117	E	76
	DEN=TGK(J)-YEAR	E	77
	TGJ=0.	E	78
	IF (DEN.GTQ1) TGJ=TG(J)+TIM(T8(K)/DEN)	E	79
160	TG9UM=TGSUM+TGJ	E	80
170	OBJ(K)=((CL(K)-CLY(I,IY))/CLY(I,IY))*(BPSUM*AR+TGSUM)	E	81
	KP41	E	82 83
	<pre>IF (OBJ(2)/COST(2).GT.OBJ(1)/COST(1)) KP=2 IF (DORL1) KP=1</pre>	E	84
	IF (CORL2) KP=2	E	85
	CLP(!)=CL(KP)	Ē	86
	LRP(I)=KP	Ē	87
	CSP(I)=CS(KP)	E	88
	ECP(I)=EC(KP)	E	89
	EIP(1)=E1(KP)	E	90
	OBJP(I)=OBJ(KP)	Ε	
	IF (CLY(1, [Y).LT., 799) PER(1)=PART(KP)	E	92
180	RATIO(I)=UBJP(I)/COST(KP)	E E	93 94
•	CALL SORT (RATIO, PRL, IPRL, NT, .TRUE.)	Ē	95
C C	WRITE PRIORITY LIST	E	96
č	white this mit the state	È	97
•	WRITE (6,34C) IYEAR, IUT	Ē	98
	WRITEL=.TRUE.	E	99
	SMCS=0.	_	100
	SMOB=0.		101
	SMCST=C.	_	102
	DO 220 [=1,NT		103
	[P=[PRL(]) 10Abr/10]-1	_	104 105
	IRANK(IP)=I SMCST=SMCST+CSP(IP)+CENG*(ECP(IP)+EIP(IP))		106
	SMCS+SMCS+CSP(IP)		107
	SMC3-3MC3-C37(IF)		108
	IF (SMCS.LE.BUDG((Y)) GO TO 200		109
	IF (.NGT.WRITEL) GO TO 190		110
	WRITE (6,330)		111
	WRITEL=.FALSE.	, E	112
			• . ••

```
190
       CLY(IP, IY+1)=CLY(IP, IY)
                                                                                 E 113
E 114
       LR([P, [Y+1]=0
       GO TO 210
                                                                                 E 115
200
       CLY(IP, IY+1)=CLP(IP)
                                                                                 E 116
210
       LR(IP, IY)=LRP(IP)
                                                                                 E 117
220
       WRITE (6,360) 1, ITP(IP), (ITITLE(J,IP), J=1,8), LRP(IP), CSP(IP), ECP(I
                                                                                E 118
      1P) .EIP(IP) .OBJP(IP) .RATIO(IP) .SMCS.SMOB.SMCST
                                                                                 E 119
C
                                                                                 E 120
C
       WRITE ANNUAL OUTPUT
                                                                                 E 121
C
                                                                                 E 122
       DO 230 K=1.4
                                                                                 E 123
       PT(K)=C.
                                                                                 Е
                                                                                   124
       DT(K)=0.
                                                                                 E 125
230
       ALAB(K)=C.
                                                                                 E 126
       IDP=ITP(1)/1000CCCC
                                                                                 E 127
       IPP=ITP(1)/10000
                                                                                 E 128
       IPN=1
                                                                                 Ε
                                                                                   129
       DO 290 I=1.NT
                                                                                 E 130
       ID=ITP(I)/10000000C
                                                                                 E 131
       IPROJ=ITP(1)/100CD
                                                                                 E 132
       IF (1.EQ.1) GO TO 260
                                                                                 E 133
      IF (IPROJ.EQ.IPP) GO TO 280
                                                                                 E 134
      WRITE (6,320) MPR, PT
                                                                                 Ε
                                                                                   135
      DO 240 K=1.4
                                                                                 E 136
      DT(K) = DT(K) + PT(K)
                                                                                 E 137
24C
      PT(K)=C.
                                                                                 E 138
       IPP=.IPROJ
                                                                                 E 139
       IPN=IPN+1
                                                                                 E 140
      IF tID.EQ.IDP) GO TU 270
                                                                                 E 141
      WRITE (6,320) MDV, DT
                                                                                 E 142
      DO 250 K=1.4
                                                                                 E 143
      ALAB(K)=ALAB(K)+DT(K)
                                                                                 E 144
250
      DT ( M ) = 0 .
                                                                                 E 145
260
      IDP=ID
                                                                                 E 146
C
                                                                                 Ε
                                                                                  147
C
      WRITE ANNUAL OUTPUT HDG
                                                                                 E 148
C
                                                                                E 149
      NY=67+1Y
                                                                                E 150
      NYP1=NY+1
                                                                                E 151
      WRITE (6,350) (NDH(J,ID),J=1,3),IYEAR,IDT,IPROJ,(NPH(J,IPN),J=1,14
270
                                                                                ε
                                                                                  152
     1).NY.NYP1
                                                                                E 153
280
      ITASK=(ITP(I)-IPRDJ+10000)+10000
                                                                                 E 154
      ISEL=ISNO
                                                                                E 155
      IF (ABS(CLY(I, IY+1)-CLY(I, IY)).LT..001) GO TO 290
                                                                                Ε
                                                                                  156
      ISEL=IBLNK
                                                                                Ε
                                                                                  157
      PT(1)=PT(1)+OBJP(1)
                                                                                E 158
      PT(2)=PT(2)+CSP([)
                                                                                E 159
      PT(3)=PT(3)+ECP(1)
                                                                                E 160
      PT(4) = PT(4) + EIP(I)
                                                                                E 161
      NRL±1
                                                                                Ε
                                                                                  162
      IF (CLY(I, IY+1).LT.O.) NRL=2
                                                                                Ε
                                                                                  163
290
      WRITE (6,310) ISEL, ITASK, (ITITLE(J, I), J=1,4), CLY(I, IY), CLY(1, IY+1)
                                                                                E 164
     1,08JP(1),CSP(1),ECP(1),EIP(1),LRP(1),IRANK(1),(ITITLE(J,1),J=5,8)
                                                                                E
                                                                                  165
      DD 300 K=1.4
                                                                                E 166
      DT(K) = DT(K) + PT(K)
                                                                                Ε
                                                                                  167
300
      ALAB(K)=ALAB(K)+DT(K)
                                                                                Ε
                                                                                  168
```

STATE OF

	WRITE (6,320) MPR,PT	E 169
	WRITE (6,320) MDV,DT	E 170
	WRITE (6,327) MLB,ALAB	E 171
	RETURN	E 172
С		E 173
310	FORMAT (2XA6,5X14,6X4A6,2(7XF3.2),F11.4,3F13.2,16,113/23X4A6)	E 174
320	FORMAT (70X40(1H-)/53XA4,5X5HTDTALFil.4,3F10.2)	E 175
330	FORMAT (1H-)132(1H+)//)	E 176
340	FORMAT (1H156X19MPRIORITY LIST FORI6,41X2A6/1C5X3(6X3HCUM)/13H R	E 177
	1ANK TASK20X5HT1TLE26X2HRL4X3HC+S4X4HENGC3X5HENG[H3X3H0BJ5X5HRAT	E 178
	2IO6X3HC+S6X3HDBJ5X4HCUST//)	E 179
350	FORMAT (1H13A6,8HDIVISION24X16HANNUAL OUTPUT 16,47X2A6//9X7HPROJ	E 180
	1ECT1XI4,7X14A6/112X6H BEST 4X7HOVERALL/8H 5X4HTASK13X5HT1TL	E 181
	2E1 dx2HCLI3,5X2HCLI3.5X3HOBJ7X3HC+S6X4HENGC6X5HENGIH6X2HRL9X4HRANK/	E 182
	3/1	E 183
360	FORMAT (14,2X18,2X7A6,A4,14,F8.1,2(4XF3.1),F8.3,3XF6.5,F9.1,F9.3,F	E 184
	19.1)	E 185
	END	E 186-

CLNU.

c	FUNCTION CLNU	(CLIN.CST)	F	2
c c	RTN TO UPDATE	CONF LEVEL	F F	4 5
•	COMMON /TASK/	BJ(16),BP(16),CLP(4),COST(2),CSH(4),CS(2),	F	6
	1	CSUM(8), EC(2), E1(2), IS(15), IT(15), IT(TLE(8,250),	F	7
	Ž	LIM(5),NPH(14,28),RWU(10),S(15),T(15),	F	8
	3	TG(117)	F	9
	ICL=10.+CL1N+		F	10
	IF (!CL.GE.8)		F	11
		(ICL)+.00000001	F	12
	DCL=(CLIN-CLN	• • • • • • • • • • • • • • • • • • • •	F	13
		CSUM([CL+1)0C1	F	14
	IF (CST.GT.DC		F	15
		CST/CSUM(ICL+1)	F	16
	GO TO 110	031743074106727	F	17
100	ICL=ICL+1		F	18
100		CO EN 130	F	19
	IF fICL.GE.8) CLNU=CLNU+.1	60 10 120	F	20
		101 43 3	F	21
	DC9+DCS+CSUM(F	_
	IF (CST.GT.DC		F	22
		(CST+CSUM(ICL+1)-DCS)/CSUM(ICL+1)	-	23
110		FIX(CLNU+100.)))/100.	F	24
	RETURN		F	25
120	CLNU=.8		F	26
	RETURN		F	27
	END		F	28-

TIM.

FUNCTION TIM (TAJ)	G	2
·	G	3
RTN TO DEVELOP TIMELINESS FUNCTION	G	4
	G	5
TIM=C.	G	6
IF LT8J.GE.2.) RETURN	G	7
IF (T8J.GT.1.5) GO TO 100	G	8
TF (T8J.GT5) GO TO 110	Ğ	9
T1M=2. +T8J	Ğ	10
RETURN	Ğ	11
TIM=42.+T9J	Ğ	12
RETURN	Ğ	13
TIM=1.	•	14
	~	15
END	Ğ	16-
	RTN TO DEVELOP TIMELINESS FUNCTION TIM=C. IF LTBJ.GE.2.) RETURN IF (TBJ.GT.1.5) GO TO LGO IF (TBJ.GT5) GO TU LIO TIM=2.*TBJ RETURN TIM=42.*T9J RETURN TIM=1. RETURN	RTN TO DEVELOP TIMELINESS FUNCTION G TIM=C. IF (T8J.GE.2.) RETURN IF (T8J.GT.1.5) GD TO 1GO IF (T8J.GT5) GD TO 110 G TIM=2.*T8J RETURN TIM=42.*T9J RETURN G RETURN TIM=1. RETURN G G G G G G G G G G G G G

SURT.

```
SUBROUTINE SORT (XIN, XOUT, LIST, N, DECEND)
                                                                                     2
                                                                                н
                                                                                     3
C
                                                                                н
С
      RTN TO ORDER ARRAY OF NUMBERS IN ASCENDING OR DESCENDING PRDER
                                                                                н
C
                                                                                н
      LOGICAL DECEND
                                                                                н
      DIMENSION XIN(N), XOUT(N), LIST(N)
                                                                                     7
                                                                                н
                                                                                     8
      L19T(1)=1
      XCUT(1)=XIN(1)
                                                                                н
                                                                                     q
                                                                                Н
                                                                                    10
      00 150 I=2,N
      IF (XIN(1).LE.XOUT(1-1)) GO TO 140
                                                                                н
                                                                                    11
      11=1-2
                                                                                н
                                                                                    12
                                                                                н
                                                                                    13
      IF (11.EQ.0) GO TO 110
      DO 160 K=1,11
                                                                                н
                                                                                    14
      L=1-K-1
                                                                                Н
                                                                                    15
      IF (XIN(I).LE.XOUT(L)) GO TO 120
                                                                                н
                                                                                    16
100
      CCNTINUE
                                                                                н
                                                                                    17
                                                                                Н
110
                                                                                    18
      F=0
120
                                                                                н
                                                                                    19
      MS=L+2
      DO 130 M=MS+1
                                                                                н
                                                                                    20
      ISUB=I+MS-M
                                                                                Н
                                                                                    21
      XOUT(ISUB) = XOUT(ISUB-1)
                                                                                н
                                                                                    22
130
      LIST(ISUR) = LIST(ISUR-1)
                                                                                н
                                                                                    23
      XOUT(L+1)=XIN(1)
                                                                                н
                                                                                    24
      L[9T(L+1)=1
                                                                                н
                                                                                    25
      GO TO 150
                                                                                н
                                                                                    26
140
      XOUT(I)=XIN(I)
                                                                                Н
                                                                                    27
                                                                                н
      LIST(I)=I
                                                                                    28
      CENTINUE
150
                                                                                H
                                                                                    29
C
                                                                                н
                                                                                    30
C
           CHANGE ORDER FROM DESCENDING TO ASCENDING.
                                                                                н
                                                                                    31
C
                                                                                н
                                                                                    32
      IF (DECEND) RETURN
                                                                                н
                                                                                    33
      N2=(N+1)/2
                                                                                н
                                                                                    34
      DO 160 I=1,N2
                                                                                н
                                                                                    35
      (1) TUOX=A
                                                                                н
                                                                                    36
      ISU8=N+1-I
                                                                                н
                                                                                    37
      XOUT([])=XOUT([SUB)
                                                                                H
                                                                                    38
      XOUT (ISUB) = A
                                                                                н
                                                                                    39
      IA=LIST(I)
                                                                                Н
                                                                                    40
      L19T(1)=LIST(ISUB)
                                                                                H
                                                                                    41
      LIST(ISUB)=IA
                                                                                   42
16C
                                                                                н
      RETURN
                                                                                   43
                                                                                Н
      END
                                                                                н
                                                                                   44-
```

FNAL.

```
I
      SUBROUTINE FINAL
                                                                                   2
С
                                                                                   3
C
      RTN TO PREP AND WRITE FINAL RPT AND TECH PROFILES
С
                                                                                   5
      COMMON /EX/ BUDG(5), DOFAC, DUREP, DOPRO, DORL1, DORL2, IDT(2), IY, NT, CTN
     1G.LASTY
                                                                                   7
      COMMON /TASK/ BJ(16), BP(16), CLH(4), COST(2), CSH(4), CS(2),
                     CSUM(8), EC(2), E1(2), IS(15), IT(15), ITITLE(8, 250),
                                                                                   9
     2
                     LIM(5), NPH(14,28), RWU(10), S(15), T(15),
                                                                                  10
                     TG(117)
                                                                                  11
      COMMON /FIVE/ CLY(250,6), ITP(250), LR(250,5), PER(250),
                                                                                  12
                     TBJ(15). TGK(117)
                                                                                  13
      LOGICAL DOFAC, DOREP, DOPRO, DURL1, DORL2
                                                                                  14
      DIMENSION IHRS(5), CAS(8), ENC(8), ENI(8)
                                                                                  15
                                                                               1
      DIMENSION CSU(5), ECU(5), EIO(5), IPRO(250, 15), IROW(80), IYAR(6),
                                                                                  16
                 TJ0(15), TK0(15), ITC(2), ISY(2),
                                                                                  17
                 NAMP(4), NAMT(4), [FAC(6,8),OCC(6,8),TS(15),TT(15)
     2
                                                                                  18
      19
      DATA ITC(1)/12H2
                          TECH OBJ/, ISY(1)/12H1SYS SUPPORT/
                                                                                  20
      WRITE (8,320)
                                                                                  21
      00 200 I=1.NT
                                                                                  22
      READ (1) ITASK, NAMT, ISYM, LEXT, NAMP, LIM, IR, (ITITLE(J, I), J=1, 8), CS, E
                                                                                  23
     1C, 81, CLH, CSH, IT, T, IS, S, RWU, CAS, ENC, ENI, IFAC, OCC
                                                                                  24
С
                                                                                  25
C
      WRITE FINAL RPT
                                                                               1
                                                                                  26
C
                                                                               I
                                                                                  27
      IF (MOD(1,2).EQ.1) WRITE (6,260) IDT
                                                                                  28
      IDHITASK/100000000
                                                                               I
                                                                                  29
      WRITE (6,270) [D.ITASK.(ITITLE(J.I).J=1.8).IR
                                                                                  30
      00 100 J=1,15
                                                                               1
                                                                                  31
      IGaIT(J)
                                                                               ī
                                                                                  32
                                                                                  33
      TKO(J)=0
      IF (IG.NE.S) TKO(J)=TGK(IG)+.CC1
                                                                                  34
      18=15(J)
                                                                               1
                                                                                  35
      TJ0(J)=0.
                                                                                  36
      1F (18.NE.3) TJO(J)=TBJ(18)*.01
                                                                                  37
      TT(J)=FLOAT(IT(J)) +.901
                                                                                  38
      TS(J)=FLOAT(IS(J))+.01
                                                                                  39
100
      IF (DO2RO) IPRO(I,J)=IFIX(10.*S(J)+.01)+100*IB+100000*IFIX(10.*T(J
                                                                                  40
     11+.011+100c0000#IG
                                                                                  41
      WRITE (6,230) TT,TS,T,S,TKO,TJO
                                                                               1
                                                                                  42
      00 110 J=1.5
                                                                                  43
                                                                               1
      CSOLUl=C.
                                                                               I
                                                                                  44
      ECO(J)=5.
                                                                                  45
110
      EID(J)=0.
                                                                                  46
                                                                               ſ
      DO 120 J=1.LASTY
                                                                                  47
      IF (ABS(CLY(I,J+1)-CLY(I,J)).LT..0001) GO TO 126
                                                                                  48
      PCT=1.
                                                                               1
                                                                                  49
      IF (CLY(1.J+1).GT..799) PCT=PER(1)
                                                                               I
                                                                                  50
      NRL=LR([,J)
                                                                               I
                                                                                  51
      CSO(J)=CS(NRL)*PCT
                                                                               Ī
                                                                                  52
      ECO(J) = EC(NRL) *PCT
                                                                                  53
                                                                               I
      EIG(J)=EI(NRL)*PCT
                                                                                  54
      CONTINUE
                                                                                  55
120
      WRITE (6,290) CLH, (CLY(I,J),J=2,6), (RWU(J),J=1,5), CSH, CSQ, (RWU(J),
```

FNAL.

С	1J=5,10),ECG,EIO,(LR(1,J),J=1,5)	I I	57 58
Č C	CHECK FOR TASKS NOT SELECTED FOR 5 YEARS	Ī	59 60
	IF (ABS(CLY(1,1)-CLY(1,6)).GT0001) SO TO 130	I	61
	WRITC (8,330) ITASK,(ITITLE(J,I),J=1,8) GO TO 200	I I	62 63
130	IF (.NOT.DOFAC) GO TO 200	I I	64
C C	WRITE FACILITY PRE-SORT BINARY RECORDS	! [65 66 67
	JS=ABS(CLY(1,1))+1G.001	I	68
	JT=ABS(CLY(1.6))*10.001	I	69
	00 190 JaJS.JT	ı	72
	00 190 K=1,6	I I	71 72
	IFC=IFAC(K,J)	i	73
	IF (IFC.EQ.O) GO TO 190 CO 140 L=1.5	i	74
14C	1HRS(L)=0	i	75
140	MCLB=J	i	76
	00 180 L=1,5	i	77
	MCL*ABS(CLY(I,L+1))*10.GO1	i	78
	1F (MCL.LE.MCLB-1) GO TO 180	Ī	79
	DO 170 M=MCLB,MCL	1	80
	DO 150 N=1,6	1	81
	IF (IFC.EQ.IFAC(N.M)) GO TO 160	l	82
150	CONTINUE	1	83
	GO TO 176	I	84
160	IHRS(L)=1F[X(OCC(N,M)+.95)+1HRS(L)	I	85
170	IFAC(N,M)=C	Ţ	86
180	1.025 1.0212	I I	87 88
190	with the transfer of the trans	I	89
200		i	90
Č		ī	91
č	WRITE TRAILER	1	92
Ċ		I	93
	11 0- ////	Ţ	94
	WRITE (11) IFC,ITASK,NAMT,LEXT,IHRS	ľ	95
	IF (.NOT.DOPRO) RETURN	I	96
C		ľ	97
C	WALLE LEGITER OLI	I I	98
C		-	99 100
	DO 250 J=1,131 J1=J-117	-	161
			102
	ii ioodadan mara ioo aan aan aan aan aan aan aan aan aan a		103
	DO 250 I=1,NT	-	164
			105
			106
	IF (J.LE.117) KPRD=KPRO/100000		LC7
	IF (J.EQ.MOD(KPRO.100000)/100) GD TO 220		LCB
210			LC9
	V · · · · · · · · · · · · · · · · · · ·		110
220			111
230	IROW(M)=IBLNK		12

ENAL.

	00 240 L=1.0	1	113
	KL=7-L		114
	1L=ABS(CLY(1,KL)+1,00.)+.01		115
240	TROW(TL)=[YAR(KL)	_	116
	SUP*.1*FLOAT(MOD(KPRO.1UC))	-	117
	IF (SUP.GT699) WRITE (6.310) ITP(I).SUP.(ITITLE(K.I).K=1.8).(190	-	118
	1W(K).K=20.40)	-	119
25¢	CONTINUE		
٠,٠	RETURN		120
_	RETURN		121
24.0	F00WF 44W122W5 44PF 5W 44W1		122
260	FORMAT (1H130X50HRDE FY 1969 FINAL REPORT		123
	1 3) X 2 A 6)		124
270	FORMAT (1H28HDIVISTUNI3,7X4HTASK2XI8,6X8A6,20X2HARI4//)		125
280	FORMAT (2)X23HSUPPORT OF TECH OBJS42X20HSUPPORT OF SYSTEMS/5H	_	126
	1 TO 15(1XF3.3),5X4HSYS 15(1XF2.2)/5H SUP 15(3H .F1.1),5X4HSUP 15	I	127
	2(2H •F1•1)/5H TK 15(1XF3•3)•5X4H TJ 15(1XF2•2)///)	I	128
29 0	TORMAT (51X7HHISTORY49X16HASSUCIATED 1498/15X2H658X2H668X2H673X2H	I	129
	1688X2H698X2H703X2H718X2H728X2H7314X11HWORK UNITS/4X3HCL 9(7XF3.2)	1	130
	2.7X5A5/3X4HC+S 9F1'.1.7X5A6/3X4HENGC43X5F13.1/2X5HENGIH49X5F10.1/4	Į	131
	3X3HRL 39X5110/2(1H9/))		132
30C	FORMAT (2A6,14,40x18HFY 1959 PROFILES44X2A6//3X4HTASK7X3HSUP23Y5		133
	1HTITLE43X17HCONFIDENCE LEVEL /70X2H 29(1H.)1H39(1H.)1H49(1H.)1H59(_	134
	214.)1469(14.)1479(14.)149//)		135
310	FORMAT (2X18,4XF3.1,3X8A6,3X61A1)		136
32C	FORMAT (1H146X39HTASKS NOT SELECTED FOR FIVE YEARS ///)	_	137
33¢	FORMAT (2)X18,12X8A6)		138
	END	-	139-
		•	,

ASD-TR-68-23

UTP40

SIBLDR	UTM40	16 APR 68	UTM40000
SFILE	UTM40	'UNITO1',4(1),READY,BIN,INOUT,BLK=26	UTM40001
SFILE	UTM40	'UNITO7',4(2),READY,BIN,INOUT,BLK=26"	UTM40002
SFILE	UTM40	'UNITC8',4(3),READY,8CD,INOUT,BLK=22	UTM40003
SFILE	UTM40	"UNIT11",K(1),READY,BIN,INOUT,BLK=26"	UTM40G04

FACT.

```
PTN TO O/P SURTED FACILITY UTILIZATION DATA
C.
      DIMENSION ITITLE(11,150)
      DIMENSION [HRS(5), NAMT(4), [HT(5), IDT(2), [HUR(5,5]
                                                                                      5
      DATA FIRST/T/
                                                                                      6
                                                                                      7
      DATA (IHDR(1,1), I=1,5)/
                                   3CHAFFOL-EXISTING FACILITIES
                                                                                      9
                                                                                 K
     2
                                   36H
                                                                                      9
     3
                                   3(HAFFOL-PROPOSED FACILITIES
                                                                                  K
                                                                                     16
                                   30HCOMPUTER FACILITIES
                                                                                  K
     4
                                                                                     11
                                   30HNGN-AFFDL FACILITIES
                                                                                  ĸ
                                                                                     12
      LOGICAL FIRST
                                                                                  K
                                                                                     13
      CALL DATE (IDT)
                                                                                  K
                                                                                     14
                                                                                     15
C
      BRING IN FAC TITLES
                                                                                  ĸ
С
                                                                                     15
С
                                                                                  ĸ
                                                                                     17
                                                                                  ĸ
      DO 100 I=1,150
                                                                                     13
      READ (5,260) (ITITLS(J,1),J=1,11)
                                                                                  K.
                                                                                     19
      IF (ITITLE(1,1),E0,,) GO TO 116
                                                                                  K
                                                                                     2.
100
      CONTINUS
                                                                                  ĸ
                                                                                     21
      WRITE (6,270)
                                                                                  ĸ
                                                                                     22
                                                                                  ĸ
                                                                                     23
      STCR
110
      READ (3) IFC, ITASK, NAMT, LEXT, IHRS
                                                                                  K
      IF (IFC.EU.IFCP) GG TO 180
                                                                                  ĸ
                                                                                     25
      IFCR=IFC
                                                                                  κ
                                                                                     26
      IF (.NCT.FIRST) GO TO 120
                                                                                     27
                                                                                  ĸ
      FIRST = . FALSE.
                                                                                     28
      GO TO 139
WRITE (6,240) IHT
                                                                                  ĸ
                                                                                     29
12C
                                                                                     30
                                                                                 K
      IF (IFC.GT.C) GO TO 13C
                                                                                  ĸ
                                                                                     31
C
                                                                                  K
                                                                                     32
                                                                                  ĸ
C
      TRAFLER
                                                                                     33
                                                                                  ĸ
С
      WRITE (6,250)
                                                                                  K
                                                                                     35
      STOR
                                                                                  ĸ
                                                                                     35
C
                                                                                  K
                                                                                     37
      A FAC HOR CR FAC CHANGE
                                                                                 ĸ
C
                                                                                     38
                                                                                 K
                                                                                     39
      IFH=IFC/1000
130
                                                                                 ĸ
                                                                                     40
      IF LIFH.EQ.O) IFH=1
                                                                                     41
      IF (IFH.EQ.IFHP) GO TO 140
                                                                                 K
                                                                                     42
      IFHP=IFH
                                                                                 ĸ
                                                                                     43
      WRITE (6,200) (IHDR(J, [FH], J=1,5), [DT
                                                                                 K
      WRITE (6,210)
                                                                                 K
                                                                                     45
C
                                                                                 K
                                                                                     46
      SCAN FOR FAC TITLE SUBSOR
C
                                                                                     47
C
                                                                                     48
                                                                                 K
140
      CO 150 I=1,150
                                                                                     49
      IF LIFC.EQ.ITITLE(1,1)) GO TO 160
                                                                                     5C
                                                                                 Κ
150
      CONTINUE
                                                                                 K
                                                                                     51
                                                                                     52
160
      IFT=ITITLE(1,1)+10000
                                                                                 K
      WRITE (6,220) IFT, ([TITLE(J,I),J=2,11)
                                                                                 K
                                                                                     53
                                                                                 ĸ
C
                                                                                     54
C
      ZERO SUMS
                                                                                 ĸ
                                                                                     55
.c
                                                                                 K
                                                                                     56
```

FACT.

17C	00 170 1=1.5 IHT(1)=9	K	57 58
C		K	59
С	PRCCESS DETAIL LINE	K	60
C C		K	61
180	00 190 [5].5	K	62
190	IHT(1)=IHT(1)+IHRS(1)	K	63
	WRITE (6.230) ITASK.NAMT.LEXT.IHRS	K	64
	GO TC 110	K	65
C		K	66
200	FORMAT (1H15A6.4GHRDE 1969 FACILITY UTILIZATION REPORTSCX2A6//	K	67
	11	K	68
210	FORMAT (1H377X24HHDURS - BY FISCAL YEAR/67X2H698X2H708X2H718X2H7	K	69
	128x2+73//)	K	70
220	FORMAT (1x14,3x17a6)	K	71
230	FORNAT (1X18,7X5A6,14X5I10)	K	72
240	FORMAT (1H047X12HTGTAL HOURS5[10///)	K	73
250	FORMAT (4H1EOJ)	K	74
260	FORNAT (14,9A6,A2)	K	75
270	FORMAT (20HOTOD MANY FAC TITLES)	K	76
	END	K	77-

APPENDIX I PROJECT RDE FY 69 PROGRAM - TIME CHARGE NO. 77601

DEPARTMENT OF THE AIR FORCE AIR FORCE FLIGHT DYNAMICS LABORATORY (AFSC) WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

REPLY TO ATTN OF: FDG

15 AUG 1997

SUBJECT: Project RDE FY 69 Program - Time Charge Nr. 77601

- TO: FDC FDD FDF FDM FDT
 - 1. Attached are the input data instructions for the FY '69 Research and Development Effectiveness (RDE) Program.
 - 2. The inputs required to RDE have been considerably simplified and redured as compared to previous years. The engineer's time required will be minimized. There are 4 forms to be completed by the engineer. These are:
 - Format I Confidence Level Work Description and Resources
 Requirements (This is the core of the Project/
 Task/Subtask Exploratory Development Plan)
 - Format II Support of Laboratory Technical Objectives (Internal Laboratory Technical Communication)
 - Format III Systems Payoff List. (For communication to SPO and advanced systems offices)
 - Format IV Limited War Support. (Used for St. reporting)
 - 3. The RDE FY '69 Punch Card Transcript will be accomplished by secretarial or clerical personnel who will be specially instructed by FDP to do this task. This will free the engineer of a rather tedious job and will make for consistent entries. Further communications to the Division will be made regarding this matter.
 - 4. The Resource Schedule Summary Work Sheet, Confidence Level
 Display Chart and Facility Grid Transcript used last year have been
 deleted from the input requirements.
 - 5. The objectives of above changes are to:
 - Minimize engineer's time expended preparing inputs.
 - Improve inputs fewer errors and misinterpretations.
 - Improve input data response time.
 - Reduce computer usage time.
 - 6. The Laboratory management uses data derived from the RDE outputs throughout the year for information retrieval, as an aid to Laboratory management decisions and for communication with advanced system offices.

7. In view of the above and to assure accuracy, it is extremely important that task engineers have a thorough understanding of the RDE instructions. Instructions should be reviewed prior to actual preparation of RDE imput data. Also, a completed sample input package is included for guidance and reference. Use of prior year input data as a guide where task objective remains unchanged will aid in decreasing input preparation time. If further clarification is required, the following FDP personnel are available:

A. B. Nutt, J. F. Schmidt, It. L. Morris Ext. 55337, 52615, Room 2E27, Bldg. 45

- 8. Each division office is requested to review all the task/ subtask inputs and rank these in priority order according to the importance of the effort to future AF systems in general. The rank for each task/subtask will be inserted on the respective Format I prior to forwarding the four formats (I, II, III, & IV) to FDP.
- 9. Pimely integration of inputs by the Plans Office is required. Submittal of Division inputs to FDP in accordance with attached instructions is required on or before 20 November 1967. One (1) typed original of each input format is required.
- 10. Management judgement is an essential and integral part of the inputs. Careful consideration and review by all echelons is required to ensure that the resulting product will reflect the best professional judgement available in the Laboratory.

1000 miles 10 DALE D. DAVIS Colonel, WGAF Director

8 Atch

- Nuidance for 8Y'69 Resource Levels
 Guidance on Confidence Level Work Descriptions
- 3. Format I
- 4. Format II
- 5. Format III
- 5. Format IV 7. Sample Case
- 9. Flow Chart of RDE "69 Input Prep.

Cy to: FUV

FY '69 RESOURCE LEVELS

- 1. Inputs by Laboratory engineers to project RDE for FY 1969 will involve two Resource Levels, namely:
 - R.L. 1 Authorized Exploratory Development Engineering Manpower with FY '69 Estimated Budget Dollars
 - R.L. 2 Double the Authorized Exploratory Development Engineering Manpower with Dollars Required
- 2. The resource requirements, which make up these Resource Levels, are described below:

Resource Level 1 - Authorized Exploratory Development Engineering Manpower

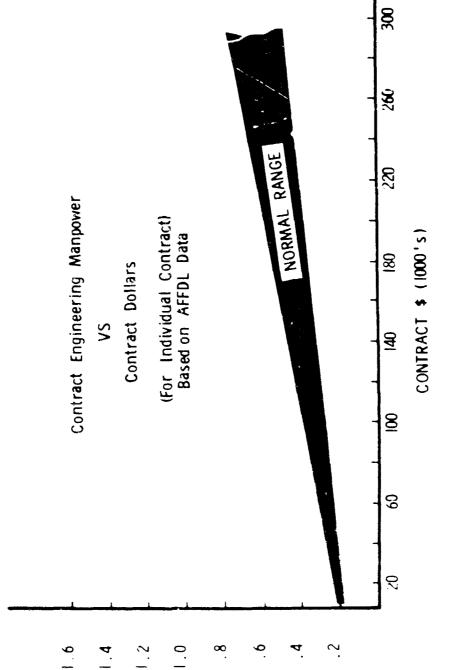
The engineering manpower shall be the currently authorized engineering manyears used for exploratory development work. The engineering manyears should be separated into contract engineering manyears and inhouse engineering manyears to reflect the best mix suitable for the task and the organization involved. Assume adequate technician, clerical and wage board support is available but do not include in manpower; use engineering manyears only. Work should not be subdivided to a point where less than .3 engineering manyears/yr. are required. The Project Resources List attached, shows the authorized FY '68 exploratory development S&E manyears by project; use this manyear estimate for FY '69 as a guide. Since increases in S&E manpower are not considered likely, constant manpower ceilings will be used for Resource Level 1 in successive years.

For FY '69 ceiling funds, use the Project Resources List attached as a guide but reflect any known changes to the figures that might presently be in effect.

For estimating support funds, use realistically expected support funds for in-house work. Prior year support funding should be used as a general guide. Include supply and equipment requirements with unit costs of over \$2500; travel, telephone and Form 9 requirements are not to be included. Also, consider the use of existing and proposed Laboratory facilities and other facilities outside the Laboratory.

Supplies and equipment support shall be considered as being purchased with contract type 610-680 dollars and the total dollars will be used as the task fund requirements.

Resource Level 2 - Double Exploratory Development Engineering Manpower


Use double the authorized exploratory development engineering manyears for the task/subtask level being submitted in RDE FY '69. If the input is at task level, then the manpower should be double the task authorized manpower. If the input is a subtask, it should be double the manpower allotted to that subtask. The manyears should be separated into contract engineering manyears and in-house engineering manyears to reflect the best mix suitable for the task and the organization involved. Assume adequate clerical, technician and wage board support is available, but do not include in manpower, use engineering manyears only.

For determining contract funds where experience is not available, consider the increased manyear allocation and use as a guide the attached graph, "Engineer Manpower vs. Contract Dollars."

For estimating support funds, include supply and equilient requirements over \$2500; travel, telephone and Form 9 requirements are to be omitted. Also, consider the use of existing and proposed Laboratory facilities and other facilities outside the Laboratory.

Supplies and equipment shall be considered as being purchased with the contract type 610-680 dollars and the total dollars will be used as the task fund requirements.

3. Based in the above information, the FY '69 resources required should be inserted in the "FY '69 Ceiling Resources Programmed and the Double Engineering Manyrs" spaces provided on the Comildence Level Work Description and Resources Requirements format. (Format #I)

CONTRACT ENG, MPWR - MANYEARS

٠.

1-4

A. CONFIDENCE LEVEL WORK DESCRIPTION GUIDANCE

- 1. To measure the technical progress of each task, the Confidence Level (C.L.) scale is used. Each task engineer, using the Confidence Level scale definitions included in this attachment, will provide the Confidence Level work descriptions for his particular task/subtask.
- 2. The Confidence Level scale has a range from .2 to 1.0, and each numerical value within the scale is a Confidence Level. To provide consistency among tasks, the Confidence Level definitions shown on the attached sheet are provided for guidance to the engineer.
- 3. The exploratory development work necessary to achieve the various sequential Confidence Levels shall be described on the format entitled: "Confidence Level Work Description and Resources Requirements", Format I. (See attached completed example) The work descriptions preparation shall be guided by the following comments.
- a. Do not show work descriptions at Confidence Levels lower than the current state-of-the-art. If, for example, current state-of-the-art is at Confidence Level .5, then it is not necessary to describe the work conducted to achieve this level. Describe only the work necessary to achieve .6, .7, .8, .9, and 1.0. Do not use partial Confidence Levels such as .63, .72, .75, etc. Also, do not skip Confidence Levels, i.e., if a C.L. is not involved, insert it, and state, no work required. A task/subtask shall be considered to be at a C.L. of .2 which is considered the origin or start point for a new task. The historical information on C.L. and dollars expended for each task/subtask will be inserted on Format I. This information for prior FY's ('64, '65, '66, & '67) is the same as was submitted in RDE '68 imputs. A copy of these basic inputs will be provided to each project engineer. The entry for FY '68 will be the best estimate of C.L. and dollars expended by end of FY '68.
- b. Where applicable, include after the description of work necessary, the facilities needed to attain the Confidence Level indicated. The existing and proposed FDL facilities and other outside facilities required, including the occupancy time, should be entered on the Format I, Reference List of Facilities, attached. Notice that the facilities have been coded to aid in data retrieval. Use the coded facility number on the format. (Contact Mr. Frank Nevius, 55337/52615, for code numbers of those facilities not listed.) For example, if in-house structural tests are required to achieve a C.L. of .5, simply enter the code number 0500 for Structural Test Facility, and number of occupancy hours required. Occupancy hours is defined as the period of time the test facility is occupied and precludes the use of the test facility for any other program.
- l_1 . The total task resources required to accomplish the work described for each defined C.L. should be estimated and recorded on the Confidence Level Work Description, Format I. This should be the best estimate the

A. CONFIDENCE LEVEL WORK DESCRIPTION GUIDANCE (Cont'd)

task engineer can make without regard to the ceiling resources. This will indicate what it will cost in dollars and engineering manyears to do the various bits of work described for each defined Confidence Level. The total funds will include contract funds and support funds. It is not necessary to separate these funds, since the support fund requirement will be assumed to be provided from the project funding. The engineering manyears should show the breakout of engineering manyears for monitoring contract work and engineering manyears for in-house work. Estimate the resources required based on your presently used mix on in-house to contract manyears.

CONFIDENCE LEVEL SCALE DEFINITIONS

- 1.0 The current <u>rechnology</u> is adequate in all respects; detailed design criteria is established.
- .9 The current technology is adequate but minor refinements are desirable.
- .8 Feasibility has been demonstrated and the current technology is adequate to solve major problems, but <u>improvements</u> in such areas as service life, reliability and efficiency are needed.
- .7 Basic <u>design criteria</u> are <u>available</u>, but extensive <u>testing is required</u> to demonstrate actual feasibility (an Advanced Development Program might be required at this point).
- .6 Preliminary design criteria are available but a design at this point would be shaky using only the current information.
- .5 A complete exploratory development <u>program</u>, which has a high possibility of successful completion <u>using</u> the <u>most</u> <u>promising approach</u>, is <u>defined</u>.
- .4 The most promising approach to solution is indicated through exploratory experimentation, analytical effort, and/or simulation.
- .3 Preliminary <u>analysis indicates</u> the potential usefulness of the idea and <u>feasible approaches</u> to the problem.
- .2 The <u>problem</u> can be <u>defined</u>, and basic idea(s) formulated, but only general approaches to solution are definable.

B. SUBTASK IDENTIFICATION GUIDANCE

- 1. The basic division of work is by task. The task may support one or more systems and Technical Objectives (T.O.'s). The contribution of the task to the systems may vary for different systems. Similarly the contribution to the various T.O.'s may vary. This would be for a standard or normal task. All tasks used in RDE, will be real tasks and not blanket tasks using unauthorized task numbers.
- 2. Where task resources (manyears and funds) can be divided between subtasks, to reflect contributions to different systems and Technical Objectives, separate subtask Confidence Level work descriptions and resource requirements (Format I) will be prepared.
- 3. These subtasks will be identified with -1, -2, -3, etc. These subtask (-) numbers will be used for the life of the subtask and once the effort is completed or terminated, the (-) number should not be used again. Contributions of these subtasks to various systems and T.O.'s are handled as with the normal or standard task.
- 4. The exploratory development engineering manyears for any one subtask in FY67 shall not require less than a total of .3 engineer manyears per year, based on the currently authorized manpower.

LIST OF TECHNICAL FACILITIES

FACILITY DESCRIPTION CODE NR I AFFOL EXISTING FACILITIES NOTE: AFSC Facilities listed below were extracted from AFSCP 80-3 'Technical Facility Capability Key" Wind Turnel, Hypersonic (Gas-Dynamic - 50 MW) 0100 MHD Research Tunnel 0101 Wind Tunnel, Hypersonic (Gas-Dynamic - 4 MW) 0200 Wind Tunnel, Supersonic (Gas-Dynamic - 2 Pt) 0300 Wind Tunnel, Hypersonic (Gas-Dynamic - Pebble Bed) 0400 Structures Test Facility (Aerospace Vehicles) 0500 Induction Heating (RF) Facility 0501 Structures Test Sensor Development Facility) 0502 Heavy Gas Gun Facility 0503 Flight Loads Environmental Facility 0504 0600 Environmental Research Laboratory Natural Environment Laboratory 0601 Induced Environment Laboratory 0502 Flight Control Simulation Facility (31dg 192) 0700 Control System Development Facility (Bldg 195) 0701 Landing Gear Test Facility 0800 Decelerator Research Laboratory 0900 0901 Wind Tunnel, Vertical Wind Tunnel, Subsonic 0902 د 090 Water Tow Table Crew Station Development Laboratory 0904 Bearing Research Laboratory (Aircraft) 1000 Concelled 1100 1200 Atmosphere Control Laboratory Environmental Control Laboratory 1300 Structural Dynamics Laboratory (Aerospace Veh) 1400 Runway Profilograph 1401

CODE NR FACILITY DESCRIPTION (Cont'd) I AFFOL EXISTING FACILITIES (Cont'd) 1500 Sonic/Acoustica' Vibration Facility (Mobile) 1600 Flight Dynamics Data Analysis Facility 1700 Flight/Navigation Radioisotope Laboratory 1800 Flight Research Simulation Facility 1900 Sonic Fatique Facility 1901 Sonic Fatigue Chamber (Large) 1902 Sonic Fatique Chamber (Small) 1903 Noise Facility (Wide Band) 1904 Acoustic Facility (High Intensity) II AFFOL PROPOSED FACILITIES 3001 Flight Dynamics Research Laboratory 3002 Combined Environments Laboratory 30:03 Facility Engineering Laboratory - Bldg 254 3004 Aerodynamic/Aerotherwodynamic Hi Perf Shock Tunnel 3005 Vibration Aeroelasticity Facility 3006 Support & Restraint System Variable Acceleration Evaluator 3007 Landing Gear Model Dynamic Test Facility 3008 50 MW Magentohydrodynamic Augmentation 3009 Grappling & Lock-On Vibration Laboratory 3010 Liquid Hydrogen Test Facility - Structures 3011 50 MW EGF Contoured Nozzles 3012 Sonic Patigue Pacility Noise Source Augmentation III COMPUTER FACILITIES 4001 Bldg 45 - Remote Station IBM 1440 4002 Bldg 65 - CDC 1604 4003 Bldg 254 - CDC 160A 4004 50 Megawatt - Ambilog 4005 Bldg 434 - MARK II 4006 Bldg 192 - Simulator 4007 Sonic Fatigue - Analog Bldg 26 - Supersonic 2' Tunnel 4008 4009 Bldg 45A - FDFE - Data Collection Bldg 45 - FDCC - Analog Bllg 57 - Digital (SESCD) 4010 4011 Bldg 57 - Analog (SFSCA) 4012

FACILITY DESCRIPTION (Cont'd) CODE NR IV NON-AFFDL FACILITIES 5010 Aerospace Med Res Laboratory 5011 Sixmode 5012 Drop Tower 5013 Centrifuge 5020 AFIT Facilities 5021 5' Low Speed Tunnel 5022 Nuclear Test Facility 5030 Systems Engineering Group Facilities 5040 Aeronautical Systems Division Facilities 5041 Flight Test Support Facility 5050 Armold Engineering Development Center Wind Tunnel - 16' Transonic Wind Tunnel - 16' Supersonic 5051 5052 5053 Wind Tunnel - VKF - 40" Supersonic (A) Wind Tunnel - VKF - 50" Mach 8 (B) 5054 Wind Tunnel - VKF - 50" Mach 10 (C) Wind Tunnel - VKF - 12" Supersonic (D) 5055 5056 Wind Tunnel - VKF - 100" Hypervelocity (F) 5057 Wind Tunnel - VKF - 1000! Hypervelocity (G) (Range) Wind Tunnel - VKF - 50" Hypervelocity (M) 5058 5059 Wind Tunnel - VKF - Hyperballistic Impact Range 5060 Wind Tunnel - V/STOL 5061 5090 Air Force Missile Development Center 5091 Test Track Facility 5092 Drone Launch/Test Facility 5093 Daisy Decelerator Facility Air Force Eastern Test Range 5100 5110 Air Force Flight Test Center 5111 Parachute Test Facility 5120 National Bureau of Standards 5130 University of Minnesota 5131 SSWT 51.32 HLT 5140 Air Ploving Ground Center 5141 Missile Range Facility Brownschweig, Germany - Pro-Flight Drop Test Facility 5150

5040

FACILITY DESCRIPTION (Cont 'a) CODE NR IV NON-AFFDL FACILITIES (Cont'd) 5160 AF - Navy Data Center (Gov Computer Facility at NYU) 5170 Naval Air Gration Lakehurst, New Jersey 5180 AF Special Weapons Center, Kirtland AFB, New Mexico 5190 Princeton Free Flight Facility 5200 AME/PMR Test Range 5210 North American Aviation, Los Angeles 5220 Cornell Aeronautical Laboratories 5230 National Agronautical 5 Space Agency 5231 7 X 10 ' Subs .c Tunnel 40 X 80' Subs To Tunnel 12' Transcnic Tressure Tunnel 14' Transonic Tunnel 5232 5233 5234 5235 Langley 8' Transanic Tunnel Langley 7 X 10' Hi Speed Tunnel Langley 7 X 10' Low Speed Tunnel 5230 5231 A'ES o' Tunnel 5238 DTW. 5239

Langley Unitary Tunn 1

٠٠,

FORMAT I

CONFIDENCE LEVEL WORK DESCRIPTION AND RESOURCES REQUIREMENTS

DATE:

Related Current 1498 Work Unit

Ext. Nrs. Project Engr. Tel. Ext. Symbol Title

Goal: (Be appending and quantitative, Max. Time to complete - 10 years)

Tunk/Subtank Nr.

To k Engr

Applicability Ranking of this task based on importance to future A.F. System in general. Coordination Show funds required and the Contract and In-House Engr, Mix when total 'umber Engr. Division Office Facilities e | Occupancy in Hours Div. Br. Manyears are doubled. Code Latest estimate at end of FY68 Engr. Manyrs.for A.R. Monitoring Cont ract ₩. S XX. MY's FY 67 Double Engr. Many rs. Funds in SIC 10's FY66 (2) MY's ing Resources . - ₹ ,3,.4 to 1.0) (Give concise description of the work to a Confidence raise Confidence from one Level to next) Level of S To Optain FY 69 Ł 0 Dage, Manyrs, Custract Monitoring tal Engr, Manyrs, 7.6 Pollars Nr. Engr. Monyra. In-House Work Peacrip Lon of Work Necessary Confidence Level Achieved Contract & Support Historical Information Dollars Expended Resource Levels Total ž

96

3-1

FORMAT I

CONFIDENCE LEVEL WORK DESCRIPTION AND RESOURCES REQUIREMENTS (Cont'd)

Title_

Task/Subtask Nr.

ces Required	Focilities	Code Occupancy	t in nours	······································	 			 	 	 	***************************************	
	myrs for	In-House										
Resor	Engr. Mc	Contract										
	Funds in	\$1000	1									
To Obtain	a Confidence	Level of	2		•							
Description of Work Necessary	Give concise description of the work to	raise Confidence from one Level to next)										
IΩ	_	H	1			3.2						

FORMAT II

Froject/Task/Subtask Nr.

SUPPORT OF AIR FORCE FLIGHT DYNAMICS LABORATORY FY-69 Technical Objective (T.O.'s)

For each task/subtask, insert the contribution (.1 to 1.0), this effort makes toward the accomplishment of the respective Technical Objectives. The scale that defines the contribution values is attached.

If your task/subtask supports a T.O. at a contribution of .8 or greater, the Technical Objective engineer's coordination should be entered immediately after the contribution value. The purpose of this coordination is to increase Laboratory engineer-to-engineer communication. Basically, this reflects professional courtesy.

CODED BUTION OF RDE TASK TO T.O.

T.O. NR. (.1 to 1.0) T.O. NR. TITLE

1.0. KK.	(.1 (0 1.0)	1.0. NA.	11146
FDT			STRUCTURES DIVISION
01 02		93601	Structura: Testing Criteric
02		93602	Thermal Application and Control
03		93603	Turbulence Data Measuring Techniques and
			Systems .
04		93604	Instrumentation for Measuring Structural
			Response
05		9 3605	Structural Design for Fiber Reinforced Air-
			craft Structures
06		9 36 06	Reduction of Aircraft Structural Valnerability
07		93607	Structural Pastening Techniques
08		9 3608	Dispersion Strengthened Metal Structures
09		93609	Hyperthermantic Structural Configurations
			Research
10		93610	Structural Design Concepts for Variable-
			Geometry Lifting Surfaces for Reentry
			Vehicles
11 12		93611	Structural Design Criteria for V/STOL Aircraft
12		93612	Empirical Loads Evaluation, Interpretation,
			and Analysis
13		93613	Structural Design Criteria for Aerospace
			Vehicles
14		93614	Structural Analysis Methods
15		93615	Structural Patique Analysis Methods
14 15 16 17		93616	Maneuver Loads Dynamic Wind Tunnel Simulation
17		93617	Turbulence Generation System
16		93618	Structures for Hypersonic Vehicle.
19		93619	Composite Construction for Flight Vehicle
			Structures
20		93620	Beryllium Structural Technology

Project/Task/Subtask Nr.

CODED RDE	CONTRI- BUTION OF TASK TO T.O.		
T.O. NR.	(.1 to 1.0)	T.O. NR.	TITLE
FDM 21		91801	FLIGHT MECHANICS DIVISION Low Speed Characteristics of Hypervelocity Vehicles
22		91802	Supersonic Boundary Layer Control
23		91803	Inlet Boundary Layer Analysis
24		91804	Airframe-Inlet-Engine Compatibility
25		91805	Hypersonic Inlets - Supersonic Combustion
26		91806	Hypersonic Inlets - Dual Mode Combustion Hypersonic Boundary Layer Phenomena
27		91807	Hypersonic Boundary Layer Phenomena
28		91808	Flight Mechanics of Re-entry Wake
29		91809	Aerodynamics of Multicomponent Vehicles
30		91810	Aerodynamics of Hypersonic Configurations
31		91811	Aerodynamics of Low Density Flow
32		91812	Effects of Aerodynamic Heating on Hypervelocity Vehicles
33		91813	Vehicle Physiochemical Environments
34	 	91814	Vehicle Synthesis Program
35		91815	Performance Simulations Application to Vehicle
			Operations
36		91816	Maneuverability Optimization
37		91817	Aerothermodynamic Testing Techniques
38 39		91818	Hypervelocity Gasd namic Simulation Hypervelocity Fl. Measuring Techniques
39		91819	Hypervelocity Fl. Measuring Techniques
40		91820	Hypervelocity Facility Magnetohydrodynamic Accelerators
41		91821	Improvement of Experimental Prediction
	~ 		Techniques for V/STOL Configurations
42		91822	Techniques for V/STOL Configurations Aerodynamic Predicts Techniques for V/STOL Aircraft
43		91823	V. STOL Propul ve Aerodynamics
43		91824	Hypersonic Exhaust Nozzles for Supersonic
			Combustion Ramjet Applications
4 5		91825	Airframe - Exhaust Nozzle Integration Hypersofic Vehicles
46		91826	Hypermotic Vehicles
47		91827	Aerospice Vehicle Integration
40		91828	Facilities for Thermil Testing of Resentry Heat Protection Macarials
47	······································	91829	Hypersonic Variable Gometry Configurations
50		91830	Effect of Abiation on Drag
51		91831	Effect of Nose Blunting on Reacting Boundary
50 51 52 53		91832	Turbulent Reacting Flows
5.3		91833	Fluid Dynamic Drag in Low Density Flows

Project/Task/Subtask Nr.

CODED	CONTRI- BUTION OF		
RDE	TASK TO T.O.		
T.O. NR.	(.1 to 1.0)	T.O. NR.	TITLE
FDC			FLIGHT CONTROL DIVISION
FDC 54		91701	Control System Analysis, Synthesis, and
			Optimization Techniques
55		91702	Gravity Gradient Techniques at Synchronous
		01703	Altitude
56 57		91703 91704	Flexible Vehicle Dynamic Response Control
-2/		91705	Aerodynamics of Stability and Control
58 59		91706	V/STOL Stability and Control
		91/06	Handling Qualities Criteria for Aerospace Vehicles
60		91707	Self-Adaptive and Invariant Flight Control
			Technology
61		91708	Energy Management Concepts
62		91709	Self-Learning Flight Control Systems
63		91710	Space Vehicle Attitude Control and
			Stabilization Techniques
64		91711	Integrated Flight Control Systems
65		91712	Flight Control Reliability
66		91713	Aerospace Vehicle Flight Control Actuation
			Techniques
67		91714	Fluidic/Flueric Control Techniques
68	·	91715	Control Duta System Technology
69		91716	Air-Mass Referenced Data Measurement Techniques
70		91717	Vehicle Attitude and Rate Sensing Techniques
71		91718	Exo-Atmosphere Sensing Techniques
72		91719	Transducers for Vehicle Controls in Severe
			Environmental Conditions
73		91720	Propellant and Propulsion Energy Management
			Technology
74	**************************************	91721	Vector Thrust and Thrust Related Parameter
			Measurement Technology
75 76		91722	Propellant Data Measurement Technology
76		91723	Propulsion Performance Assessment and
			Prediction
77		91724	Radiation Resistant Design Techniques
78		91725	Exploitation of Modern Physics Phenomena for
			Control Data Measurement
79		91727	Wind Tunnel Simulation of Gust and Maneuver
			Response and Control
80		91728	Display Mechanization Techniques
81		91729	Improvement of Display Interpretation and Readability
82		91730	Takeoff, Letdown, Approach, & Landing Techniques

	Pro	o ject/Task	/Subtask Nr.
CODED RDE T.O. NR.	CONTRI- BUTION OF TASK TO T.O. (.1 to 1,0)	T.O. NR.	TITLE
FDC (Cont	'd)		FLIGHT CONTROL DIVISION
83		91.731	V/STOL Aircraft Control Technology
84		9173 2	Electrical Primary Flight Control System Techniques
85		91733	Remote Visual Displays
86		91734	Illumination Techniques
87		91735	Primary Flight Controller Design for Transport
			Aircraft
88		91736	Energy Maneuverability Display Techniques
89		91737	Gas Injection Techniques for Control of
			Re-entry Vehicles and Interceptors
FDD 90 91		93801 93802	VEHICLE DYNAMICS DIVISION Unsteady Aerodynamics Thermoelastic Characteristics of Flexible
/ -		.7300Z	Structures
92		93803	Dynamic Aerothermoelastic Problems and Criteria
93		93804	Dynamic Load Technology for Aircraft
94		93805	Dynamic Load Technology for Aerospace Vehicles
95		93806	Flight Vehicle Vibration Prediction and Control
96		93807	Dynamic Measurement and Analysis Technology
97		93808	Flight Vehicle Noise Prediction and Control
98	——————————————————————————————————————	93809	Simulation of High Intensity Noise and
_			Associated Environments
99		93810	High Intensity Acoustic Testing Techniques
100		93811	Sonic Fatigue of Flight Vehicle Structure
101		93812	Sonic Fatigue Instrumentation Development

Project/Task/Subtask Nr.

CODED BUTION OF
RDE TASK TO T.C.
T.O. NR. (1 to 1.0) T.O. NR.

TITLE

AE ROSPACE VEHICLE EQUIPMENT DIVISION
First-Stage Type Aerodynamic Decelerators
Aerodynamic Decelerator Landing Point Control
Heavy Equipment and Personnel Airdrop
Concepts
Emergency Crew Escape
Personnel Seating and Restraint Systems
Aerospace Vehicle Crew Stations
Environmental Simulation, Protection, and
Test
Vehicle Atmosphere Control
Aircraft Thermal Control
Space Vehicle Thermal Control
Cryogenic Cooling
Bearings, Bushings, and Special Components
(formerly Bearings for Advanced Systems)
Alighting Gear System Concepts and Simulation
Techniques
Aircrew Resche Capability
Personnel Passive Defense Protection

Scale for Task/Subtask Contribution to Technical Objective

rotential Breakthrough	1.0
	. 9
Major Advancement	.8
Average Evolutionary Advancement (Steady Progress)	. 6
(Steady Frogress)	. 5
Refinement or Improvement	. 4
	. 3
Minor Contribution	. 2
	. 1

NOTE: When a Task or Subtask supports a Technical Objective at a contribution of .8 or greater, the Tech Obj engineer's coordination will be obtained.

FORMAT III

SYSTEMS PAYOFF LIST**

Cask/Subtas	ık Nr.		Title			
Engr's Name			Symbol Te		l. Ext.	
Since June 1966 Indicate after itle (C) for			(C) or (IH)		Report Nr.	
Contract & For In-Hous		**************************************				
BRIEF	STATEMENT OF CU	RRENT STATE	-OF-THE-ART FOR	THIS TA	SK (4 Lines Max.)	
SYSTEM NR. SUPPORTED	CONTRIBUTION OF TASK TO SYSTEM (.1 to 1.0)	QUANT IT AT	IDES EACH SYSTE	SPECIFIC	IMPROVEMENT THIS	
manuski de de de Adera n, et bywelyd					·	
				·····		
	ontribution of the Corrdination			show SPO	coordination,	
• •	ystem		SPO Coordin	ation		

RDE FY 59

Instructions for Systems Payoff List Format III

In general, the entries to this form are self explanatory.

- a. Note that Technical Reports published should reflect whether it is a Contract or In-House report.
- b. Use the attached list of RDE 69 systems to obtain identification code number, i.e., 1, 2, 3, 4, 5.... Enter the RDE FY 69 identification code numbers for the systems supported by this task/subtask. Insert the contribution value based on the attached contribution to system scale. (.1 thru 1.0)
- c. Several system numbers may be inseried in one block if the contribution value is the same for each system. (See example)
- d. Note that contribution values greater than $\mathcal J$ require the $\mathsf{SPO}^{\mathsf{I}}\mathsf{s}$ coordination. Telephone coordination will suffice.
- e. Type the requested information on Format III. Do not merely reference prior year form entries.

Scale for Task/Subtask Contribution to System

Absolutely Essential	1.0
Failure to have this technology available will prevent	
initiation of the system acquisition phase	
Major Contribution	.9
This technology makes such a major contribution to this system	
that if it is not funded by the laboratory the system office	
will probably fund it to ensure its availability	
Significant Contribution	. 8
Failure to acquire this technology will result in a	•
significant decrease in one or more of the performance	
parameters of the system	
Substantial Contribution	.7
	. 6
\cdot	
Refinement of System Capability	.5
	. 4
· ·	-
Indirect Contribution	.3
	, 2
Remote Association	.1

RDE FY 69 Oct. 67

The RDE 69 advanced system descriptions are classified and will be provided separately. Eac's Division office and each project engineer will be furnished a copy.

FORMAT IV

	Project/Task/Subtask Nr.
ı.	Definitions
	<u>Limited War</u> - Armed conflict short of general war, exclusive of incidents, involving the overt engagement of the military forces of two or more nations.
	Special Air Warfare - Air Force effort in the following:
	a. Counterinsurgency - The entire scope of military, paramilitary, political economic, psychological and civic actions taken by or in conjunction with the government of a nation to defeat insurgency.
	b. Unconventional Warfare - Includes the three interrelated fields of guerilla warfare, evasion and escape, and subversion against hostile states. Unconventional warfare operations are conducted within enemy or enemy-controlled territory by predominantly indigenous personnel, usually supported and directed in varying degrees by an external source
ı.	Evaluation Scale
	Specifically Applicable and Primarily Intended for LW/SW 1.0
	.9
	. 8
	Substantially contributes to the systems normally
	.6
	,5
	.4
	Indirectly Applicable and not Primarily Intended for LW/SW
	.2
	Remotely Associated with LW/SW
	Using the above scale and definitions, evaluate the contribution this task/subtask has toward (I) Limited War (LW) and (II) Special Air Warfare (SW). Also, if I or II apply, indicate with an XX which of the 3 other categories (III Interdiction (IN), IV Close Support (CS) and/or V Logistics (LG) are applicable.
	Contribution
	I. Limited War (LW) II. Special Air Warfare III. Interdiction (IN) IV. Close Support (CS) V. Logistics (LG)

ROE FY 69 Sept. 67

EXAMPLE INPUT

This example is based on an actual input from last year; some values shown were changed to cover all aspects for example purposes

DATE: 10 Oct. 66 Related Current 1498 Work Unit Nrs. 006 007 RDE FY 69 Aug. 67 55551 To develop thermoelastic analysis methods capable of predicting the bahavior of complex structures Ext. Symbol FUTR Tel, Ext. 55689 Project Engr. R. Bader CONFIDENCE LEVEL WORK DESCRIPTION AND RESOURCES REQUIREMENTS Title Thermoelastic Structural Analysis Goal: (Be specific and quantitative; Max. Time to complete - 10 years) FORMAT I subjected to severe thermal and load environments, Task/Subtask Nr. 146702-1 Task Engr Gene E. Maddux

Resource Levels		(1) FY 69 Ceiling Resources	(2) Double Engr.		Show funds r Contract and	* Show funds required and the Contract and In-House Ener.
Total Contract & Support Dollars		\$90	\$ 20		Mix when total number Manyears are doubled.	Mix when total number Engr.
V Nr. Engr. Manyrs, Contract Monitorina	fonitoring	4 MY'8	8 -	6 MY's	A.R. 16	Division Office
Mr. Engr. Manyrs, In-House Work	lo ck	.6 MY'8		1.4 MY's	Applicabilit	Applicability Ranking of this task based on importance to
Total Engr, Manyrs,	r, Manyre,	1.0 HY's	8.	2.0 MY's	future A.F.	future A.F. System in general,
Historical Information	FY64	FY65	FY66	FY67	Latest estimate at end of FY68	ate 58 Coordination
Confidence Level Achieved	. 25	. 30	, 35	. 37	42	Br. F.J. Janick
Dollars Expended	\$115	\$31 \$	\$70	\$136	06\$	Div. R. F. Hoener
Description of Work Necessary	ary	To Obtain			Resources Required	
(Give concise description of the work to a Confidence	of the work	to a Confidenc	Ц.	Engr.	yrs. for	Facilities
raise Confidence from one	Level to ne	ct) Level of (.34 to 1.0)	\$10001\$	Contract	In-House Cod	Code Occupancy
Best approach to satisfy the n	he need				0500	╀
chosen. Testing continues.	•	s.	100	4 .	.6 4011	
Theoretical background and camputer programming completed. Testing continues.	nd computer Testing	v.	500	60	1,2 0500	20 20 20

FORMAT I

CONFIDENCE LEVEL WORK DESCRIPTION AND RESOURCES REQUIREMENTS (Cont'd)

		Facilities	Occupancy in Haire	250	250 20	1				
1	red		Code	0500	0500 4011					
	rces Required	yrs for	In-House	1.2	۰,	9.	۷,			
Analysis	Resources	Engr. Manyrs	Contract Monitoring	8.	4.	4.	4.			
tructural		Punds in	\$10001\$	202	CO1	100	100			
Thermoelastic Structural Analysis	To Obtain	a Confidence	Level of (.3,.4 to 1.0)	.7	80	6.	1.0			
Task/Subtask Nr. 146702-1 Title 1	Description of Work Necessary	concise description of t	raise Confidence from one Level to next)	Experimental program completed. Check out of computer program continues.	Final analysis form attained. Minor improvements added.	L Distribution of analyses completed.	Analyses completed in which we have 100% confidence in achieving accuracies of	95% or better in determining the exact thermal stress and deformations in a vehicle.		

FORMAT II

Project/Task/Subtask Nr. 146702-1

SUPPORT OF AIR FORCE FLIGHT DYNAMICS LABORATORY FY-6° Technical Objective (T.O.'s)

For each task/subtask, insert the contribution (.1 to 1.0), this effort makes toward the accomplishment of the respective Technical Objectives. The scale that defines the contribution values is attached.

If your task/subtask supports a T.O. at a contribution of .8 or greater, the Technical Objective engineer's coordination should be entered immediately after the contribution value. The purpose of this coordination is to increase Laboratory engineer-to-engineer communication. Basically, this reflects professional courtesy.

CODED BUTION OF

RDE TASK TO T.O.

T.O. NR. (.1 to 1.0) T.O. NR.

TITLE

	111111111111111111111111111111111111111		
FUI			STRUCTURES DIVISION
01	. 6	93601	Structural Testing Criteria
02		93602	Thermal Application and Control
03		93603	Turbulence Data Measuring Techniques and
			Systems
04		93604	Instrumentation for Measuring Structural
			Response
05	.6	9 3605	Structural Design for Fiber Reinforced Air-
			craft Structures
06	. 6	9 3606	Reduction of Aircraft Structural Valnerability
C 7		93 07	Structural Fastening Techniques
08		9 3608	Dispersion Strengthened Motal Structures
09	.6	93609	Hyperthermantic Structural Configurations
			Research
10	.6	93610	Structural Design Concepts for Variable-
			Geometry Lifting Surfaces for Reentry
			Vehicles
11 12		93611	Structural Design Critesia for V/STOL Aircraft
12		93612	Empirical Londs Evaluation, Interpretation,
		_	and Analysis
13	. 4	93613	Structural Design Criteria for Merospace
			Vehicles
14	,9 BrdA	93614	Structural Analysis Methods
15	.9 Wasa	93615	Structurel Fatigue Analysis Methods
7.6		93616	Maneuver Loads Dynamic Wind Tunnel Similation
17		93617	Turbulence Generation System
14 15 16 17 18	.6	93618	Structures for Hypersonic Vehicles
19	. 0	9 3619	Composite Construction for Flight Vehicle
			Structures
20		93620	Beryllium Structural Technology

CODED	CONTRI- BUTION OF		
RDE	TASK TO T.O.		
T.O. NR.	(.1 to 1.0)	T.O. NR.	TITLE
FDM			FLIGHT MECHANICS DIVISION
21		91801	Low Speed Characteristics of Hypervelocity
			Vehicles
22		91802	Supersonic Boundary Layer Control
23		91803	Inlet Boundary Layer Analysis
24		91804	Airframe-Inlet-Engine Compatibility
25		91805	Hypersonic Inlets - Supersonic Combustion
26		91806	Hypersonic Inlets - Dual Mode Combustion
2.7		91807	Hypersonic Boundary Layer Phenomena
2 8		91808	Flight Mechanics of Re-entry Wake
29		91809	Aerodynamics of Multicomponent Vehicles
30		91810	Aerodynamics of Hypersonic Configurations
31		91811	Aerodynamics of Low Density Flow
32		91812	Effects of Aerodynamic Heating on Hypervelocity
			Vehicles
33		91813	Vehicle Physiochemical Environments
34		91814	Vehicle Synthesis Program
35		91815	Performance Simulations Application to Vehicle
*		£:	Operations
36		91816	Maneuverability Optimization
37		91817	Aerothermodynamic Testing Techniques
38		91818	Hypervelocity Gasdynamic Simulation
39		91819	Hypervelocity Flow Measuring Techniques
40		91820	Hypervelocity Facility Magnetohydrodynamic
			Accelerators
41		91821	Improvement of Experimental Prediction
•		4	Techniques for V/SIOL Configurations
42	*	91822	Aerodynamic Prediction Techniques for V/SfOL
			Aircraft
43		91823	V/STOL Propulsive Aerodynamics
44		91824	Hypersonic Exhaust Nozzles for Supersonic
			Combustion Ramjet Applications
45	.5	91825	Airframe - Exhaust Nozzle Integration
46	. 5	91826	Hypersonic Vehicles
47		91827	Aerospace Vehicle Integration
48		91828	Facilities for Thermal Testing of Re-entry
			Heat Protection Materials
49		91829	Hypersonic Variable Geometry Configurations
50		91830	Effect of Ablation on Drag
51		91831	Effect of Nose Blunting on Reacting Boundary
52		91832	Turbulent Reacting Flows
53		91833	Fluid Dynamic Drag in Low Pensity Flows
		71033	tada bynamic blog in bow rendity table

	CONTRI-		
CODED	BUTION OF		
RDE	TASK TO T.O.		
T.O. NR.	(.1 to 1.0)	T.O. NR.	TITLE
FDC			FLIGHT CONTROL DIVISION
<u>FDC</u> 54		91701	Control System Analysis, Synthesis, and
			Optimization Techniques
55		91702	Gravity Gradient Techniques at Synchronous
			Altitude
56		91703	Flexible Vehicle Dynamic Response Control
57		91704	Aerodynamics of Stability and Control
58		91705	V/STOL Stability and Control
59		91706	Handling Qualities Criteria for Aerospace Vehicles
60		91707	Self-Adaptive and Invariant Flight Control
		72,0,	Technology
61		91708	Energy Management Concepts
62		91709	Self-Learning Flight Control Systems
63		91710	Space Vehicle Attitude Control and
			Stabilization Techniques
64		91711	Integrated Flight Control Systems
65		91712	Flight Control Reliability
66		91713	Aerospace Vehicle Flight F rol Actuation
			Techniques
67		91714	Fluidic/Flueric Control ()iques
68		91715	Control Data System Technology
69		91716	Air-Mass Referenced Data Measurement
			Techniques
70		91717	Vehicle Attitude and Rate Sensing Techniques
71		91718	Exo-Atmosphere Sensing Techniques
72		91719	Transducers for Vehicle Controls in Severe
73		91720	Environmental Conditions Propellant and Propulsion Energy Management
/3		71/20	Technology
74		91721	Vector Thrust and Thrust Related Parameter
			Measurement Technology
75	······	91722	Propellant Data Measurement Technology
76		91723	Propulsion Performance Assessment and
		•	Prediction
77		91724	Radiation Resistant Design Techniques
78		91725	Exploitation of Modern Physics Phenomena for
			Control Data Measurement
79		91727	Wind Tunnel Simulation of Gust and Maneuver
			Response and Control
80		91728	Display Mechanization Techniques
81	**************************************	91729	Improvement of Display Interpretation and
			Readability
82	. 5	91730	Takeoff, Letdown, Approach, & Landing Techniques

CODED RDE T.O. NR.	CONTRI- BUTION OF TASK TO T.O. (.1 to 1.0)	T.O. NR.	TITLE
FDC (Cont	14)		FLIGHT CONTROL DIVISION
83	۵)	91731	V/STOL Aircraft Control Technology
84		91732	Electrical Primary Flight Control System
			Techniques
85		91733	Remote Visual Displays
86		91734	Illumination Techniques
87	~~~~~~	91735	Primary Flight Controller Design for Transport
			Aircraft
88		91736	Energy Maneuverability Display Techniques
89		91737	Gas Injection Techniques for Control of
			Re-entry Vehicles and Interceptors
FDD 90 91	• l ₁	93801 93802	VEHICLE DYNAMICS DIVISION Unsteady Aerodynamics Thermoelastic Characteristics of Flexible Structures
92	. •	93803	Dynamic Aerothermoelastic Problems and Criteria
93		93804	Dynamic Load Technology for Aircraft
94		93805	Dynamic Load Technology for Aerospace Vehicles
95		93806	Flight Vehicle Vibration Prediction and Control
96		93807	Dynamic Measurement and Analysis Technology
97		93808	Flight Vehicle Noise Prediction and Control
98	· · · · · · · · · · · · · · · · · · ·	93809	Simulation of High Intensity Noise and
			Associated Environments
99		93810	High Intensity Acoustic Testing Techniques
100		93811	Sonic Fatigue of Flight Vehicle Structure
101		93812	Sonic Fatigue Instrumentation Development

RDE FY 69 Aug, c⁷

CODED RDE T.O. NR.	CONTRI- BUTION OF TASK TO T.O. (.1 to 1.0)	T.O. NR.	TITLE
FDF			AEROSPACE VEHICLE EQUIPMENT DIVISION
102		90401	First-Stage Type Aerodynamic De elerators
103		90402	Aerodynamic Decelerator Landing foint Control
104		90403	Heavy Equipment and Personnel Airdrop Concepts
105		90405	Friendency Crew Escape
106		90406	Personnel Secting and Restraint Systems
107		90407	Aerospace Vehicle Crew Stations
108	•3	00408	Environmental Simulation, Protection and Test
109		90-19	Vehicle Atmosphere Control
11C		90 110	Aircraft Thermal Control
111		9041	Space Vehicle Thermal Control
112		9041	Cryogenic Cooling
113		90413	Bearings Bushings, and Special Component (formerly Bearings for Advanced Systems)
114		90414	Alighting Gear System Concepts and Firms ion Techniques
115		90417	Aircrew Rescue Capability
116		90418	Personnel Passive Defense Protaction

FORMAT III

SYSTEMS PAYOFF LIST**

Task/Subta	sk Nr	146702-	1	Title T	hermoelas	tic S	ructu	ral Analysis
Engr's Name	e Gene	E. Madd	lux	_ Symbol	FOT R	Tel.	Ext.	55689
Reports Pul Since June "Indicate of title (C) in Contract & for In-House	1966 efter for (IH)	Techni "Experm Thermo	imate Struc <u>ques" (C)</u> ental Test l Analysis"	Program t (C)	lysis o Verify		_AFF	TL Nr. DL-TR-66-59 DL-TR-66-67
		T OF CU	RRENT STATE	-OF-THE-A	RT FOR TH	IS TAS	SK (4	ML-TR-66-16 Lines Max.) both handbook
			digital comp e stress pat		grams. P	hotoel	astic	techniques are
SYSTEM NR. SUPPORTED	CONTRIE OF TASK SYSTEM (.1 to	(то	PAYOFF - QUANTITAT: TASK PROV STATE-OF-	IVE TERMS IDES EACH	, THE SPE	CIFIC	IMPRO	VEMENT THIS
3,4,7,8, 9,10,11	.6		Improved to provide more prediction	thermal store accura	ate designated	ns and o the	impro abili	iques will oved life ty to carry of safety,
ن د	. 5		(Same as a	above)				
16	.8	to the	(Same as a	ibove)				
(Telephon	e Corrdi	on of to nation MV-2	ask to syste is acceptabl	le)				ination. kheart 6/6/66

7-8

FORMAT IV

I. Definitions

<u>Limited War</u> - Armed conflict short of general war, exclusive of incidents, involving the overt engagement of the military forces of two or more nations.

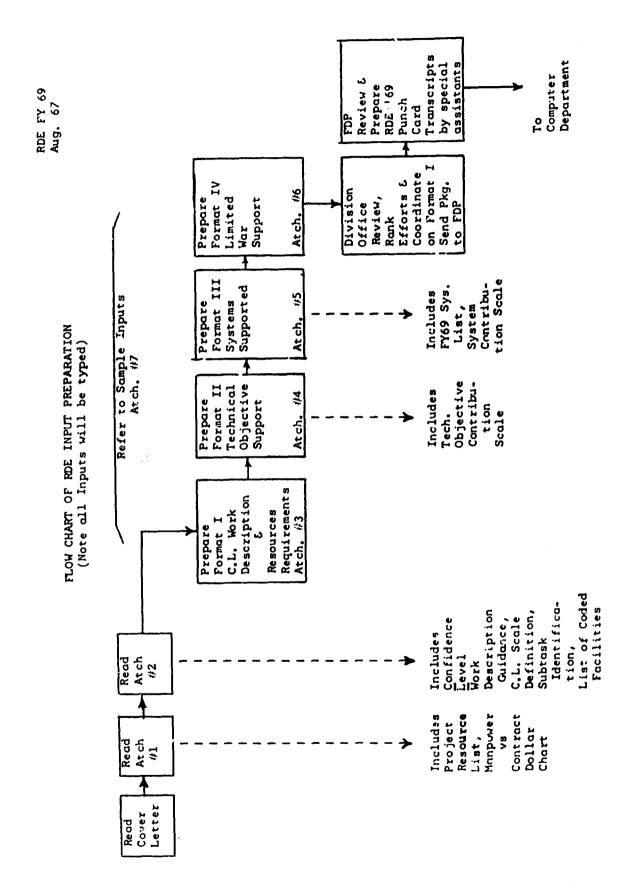
Special Air Warfare - Air Force effort in the following:

- a. Counterinsurgency The entire scope of military, paramilitary, political economic, psychological and civic actions taken by or in conjunction with the government of a nation to defeat insurgency.
- b. Unconventional Warfare Includes the three interrelated fields a guerilla warfare, evasion and escape, and subversion against hostile states. Unconventional warfare operations are conducted within enemy or enemy-controlled territory by predominantly indigenous personnel, usually supported and directed in varying degrees by an external sour

II. Evaluation Scale

uperifically Applicable and Primarily Invended for LW/SW

Substantially contributes to the systems normally associated with LW/SW/COIN e.g., V/STOL and HIT Missile, etc.


Indirectly Applicable and not Primarily Intended for LW/SW

Using the above scale and definitions, evaluate the contribution this task/subtask has toward (I) Limited War (LW) and (II) Special Air Warfare (SW). Also, if I or II apply, indicate with an XX which of t 3 other categories (III Interdiction (IN), IV Close Support (CS) and, V Logistics (LG) are applicable.

Contribution

I. Limited War (LW) 9
II. Special Air Warfare 9
III. Interdiction (IN) xx
IV. Close Support (CS)
V. Logistics (LG) xx

7-9

ATE 18 . 3

APPENDIX ...
SAMPLE INPUT DATA FOR SPECIFIC TASK

PDr FY 69 79 ·Fin

DATE: 10 NOV 134

CHARLENGE LEVEL NORA DESCRIPTION AND RESOURCES REQUIRENEEDS

Related Current 1498 Work Unit Nrs. 002 003 005 006 007 008 009 Ext. 54680 Symbol FDTE Tel. Ext. 54680 Project Engr. V. E. Kearney Title Measurement of Structural Response Toak Engr D. C. Fearnow Task/Subtask Nr. 134702

Goal: (Be specific and quantitative; Max. Time to complete - 10 years)

Is relop instrumentation for structural testing o hypersonic vehicles; develop operational fatigue sensors for

s.gersonic ventoles; develop nondestructive inspection techniques for determining the static and fatigue strangth of

supersonic vehicles.							er entre de la companya de la compa
Resource Levels	(7	(1) FY 69 Ceiling Resources	(2)	Double Engr.	* Show funds	requi	Show funds required and the
Total Contract & Support D	(1000's) Dollars \$	100	တ		Mix when total number Manyears are doubled,	otal na re doul	Mix when total number Engr.
Nr. Engr. Manyrs. Contract	Monitoring	9.	MY's 1.2	MY.	A. R. 27	Divis	sion Office
Nr. Engr. Manyrs, In-House Work	Vork	3.8 ×	MY's 7.6	MY's	Applifice (1)	ity Rar on im	Applied 'lity Ranking of this task ba. I on importance to
Total Eng	Total Engr. Manyrs.	H 3717	MY's 8.8	3 M∵'s	future A.F.	Syst	future A.F. System in general,
Historical Information	FY64	F765	FY66	FY 67	Latest estimat at end of FY68	estimate of FY68	Coordination
Confidence Level Achieved	.2	2.	.3	7°	5		Br.
Dollars Expended (1000's)	- 8	\$ 86	\$ 93	\$ 75	\$ 115		Div.
Description of Work Necessory	iary	To Obtain	-4		Resources Required	red	
(Give concise description of the work to a Confidence	of the work t	o a Confiden		Engr.	Engr. Manyrs. for	Fac	Facilities
raise confidence from one Level to next)!Level of	Level to next) Level of	\$1000.8	-	In-House	Code	Occupancy
1500°F strain sensors adequate: feasibility	ate: feasibilit	20.20.20.20.20.20.20.20.20.20.20.20.20.2		nonitoring		Z.	in Hours
1 2000 demonstrated. The	The most promising	- 19				0	0
approaches for fathgue sensors and non-destructive inspection are indicated.	ors and non- indicated.	9.	130	ú	7.1	0502	956 350
		-				water, control	

3-1

FORMAT I

COLFIDENCE LEVEL WORK DESCRIPTION AND RESOURCES REQUIREMENTS (Cont'd)

Task/Subtask Nr. 134702 Title M	Title Messurement of Structural Responsa	ructural Re	**Buods*		ļ	
Description of Work Necessiry	To Obtain		Resources	ces Required	ed	
(3) a concise description of the work to	a Confidence	Funds in	Engr, Mar	Engr, Manyrs for	1	Facilities
c conficued item one hever to next)	(.3,.4 to 1.0)	8 . OC.O7¢	Monitoring	- uon-ur	N X	occupancy in Hours
2000°F strait sensor is adequate but needs minor refinements. Preliminary design criteria are available for operational fattage sensor. Development program for non-	,	S			0500 0502	300 300
destructive inspection is defined. 2000°F strain sensor is fully adequate. Testing necessary to demonstrate feasibility	:	200	?	·	0500 0500	1000
of fatigue sensor. Preliminary design cri- teria for nondestructive inspection is available.	œ.	100	e.	4. 4	:	
Adequate technology with som refinements required for this fatigue sensor. Feasibility of nondestructive inspection demonstrates	Œ.	001	c,	7,7	0050	2000
Technology adequate in all respects for operational fatique sensor and nondestruct-					0500	005
	1.0	100	ű,	7.7	3	
١,						

II TAMHOT

Project/Task/Subtask Nr. 13470

SUPPORT OF AIR FORCE FLIGHT DYNAMICS LABORATORY FY-69 Technical Objective (T.O.'s)

For each task/subtask, insert the contribution (.1 to 1.0), this effort makes toward the accomplishment of the respective Technical Objectives. The scale that defines the contribution values is attached.

If your task/subtask supports a T.O. at a contribution of .8 or greater, the Technical Objective engineer's coordination should be entered immediately after the contribution value. The purpose of this coordination is to increase Laboratory engineer-to-engineer communication. Basically, this reflects professional courtesy.

CONTRICODED BUTION OF
RDE TASK TO T.O.
T.O. NR. (.1 to 1.0) T.O. NR.

TITLE

1 MA.	(.1 to 1.0)	1.0. NR.	11112
FDT			STRUCTURES DIVISION
<u>FDT</u> _01	.9 W.R. Jenozio	£ 23501	Structural Testing Criteria
02	9 RA. NOOLE	93602	Thermal Application and Control
03		93603	Turbulence Data Measuring Techniques and
			Systems
04		93604	Instrumentation for Measuring Structural
	1.0 J.L. Floreine	AVX	Response
05		9 3605	Structural Design for Fiber Reinforced Air-
	.8 E,ZWK		craft Structures
06		9 3606	Reduction of Aircraft Structural Valnerability
07	.9 Eu	93607	Structural Fastening Techniques
08	· S lamos	9 3 6 0 8	Dispersion Strengthened Metal Structures
09		93609	Hyperthermantic Structural Configurations
	.9 NICHOLSON		Research
1.0		9 36 10	Structural Design Concepts for Variable-
			Geometry Lifting Surfaces for Reentry
	.9 . Wyen		Vehicles
11		93611	Structural Design Criteria for V/STOL Aircraft
12		93612	Empirical Loads Evaluation, Interpretation,
			and Analysis
i 3		93613	Structural Design Criteria for Aerospace
			Vehicles
14	.9 RMBake	93614	Structural Analysis Methods
15	.8 H. Word	93615	Structural Fatique Analysis Methods
16		93616	Maneuver Loads Dynamic Wind Tunnel Simulation
1/		93617	Turbulence Generation System
18	.9 W. H. Sherd	93618	Structures for Hypersonic Vehicles
19	. 9 W. Heal	93619	Composite Construction for Flight Vehicle Structures
20	.9 F. BARNETT	93620	Beryllium Structural Technology

Project/Task/Subtask Nr. 134702

	CONTRI-		
Q 7G50	BUTION OF		
RDJ	TASK TO T.O.		
T.O. NR.	(.1 to 1.6)	T.O. NR.	TITLE
FDM			FLIGHT MECHANICS DIVISION
FDM 21		91801	Lc. Speed Characteristics of Hypervelocity
			Vehicles
2.2		91802	Supersonic Boundary Layer Control
23		91303	Inlet Boundary Layer Muly as
24		91804	Airframe-Inlet-Engine Compatibility
25		91805	Hypersonic Inlets - Supermonic Combustion Hypersonic Inlets - Dual Mode Combustion
26		91806	Hypersonic Inlets - Dual Mode Combustion
27		91807	Hypersonic Boundary Layer Phenomena
.28		91808	Flight Mechanics of Re-entry Wake
29		91809	Acrodynamics of Multicomponent Vehicles
30		91810	Aerodynamics of Hypersonic Configurations
31		91811	Aerodynamics of Low Density Flow
32		91812	Effects of Aerodynamic Heating on Hypervelocity
	.4	_	Vehicles
33		7.513	Vehicle Physiochemical Environments
34 35		91814	Vehicle Synthesis Program
35		91815	Performance Simulations Application to Vehicle
			Operations
36		91816	Mancuverability Optimization
37		91817	Aerothermodynamic Testing Techniques
38		91818	Hypervelocity Gasdynamic Simulation
39	.2	91819	Hypervelocity Flow Measuring Techniques
40		91820	Hypervelocity Facility Magnetohydrodynamic
			Accelerators
41		ATORT	Imployedant of Experimental Prediction
			Techniques for V/SIOL Configurations
42		91822	Aerodynamic Prediction Techniques for V/STOL
			Aircraft
43		91823	V/STOL Propulsive Aerodynamics
44		91824	Hypersonic Exhaust Nozzies for Supersonic
			Combustion Ramjet Applications
45		91825	Airframe - Lyhoust Nozzle Integration
46		>1826	Hypersonic Vehicles
47		91827	Aerospace Vehicle Integration
48		91828	Facilities for Thermal Testing of Re-entry
			Heat Protection Materials
	.5	91829	Hypersonic Variab's Geometry Continuence in
50		91830	Effect of Ablation on Drag
51		91831	Effect of Nose Blunting on Measting Boundary
52		91832	Turbulent Reacting Flows
53		91833	Fluid Dynamic Drag in Low Density Flows

Project/Task/Subtask Nr. 134702

	CONTRI-		
CODED	BUTION OF		
RDS	TASK TO T.C.	T 0 ND	ፓ ርጥ፣ ኮ
T.O. NR.	(.1 to 1.0)	T.O. NR.	TITLE
FDC			FLIGHT CONTROL DIVISION
FDC 54		91701	Control System Analysis, Synthesis, and
			Optimization Techniques
55	· · · · · · · · · · · · · · · · · · ·	91702	Gravity Gradient Techniques at Synchronous
			Altitude
56		91703	Flexible Vehicle Dynamic Response Control
57		91704	Aerodynamics of Stability and Control
58		91705	V/STOL Stability and Control
59		91706	Handling Qualities Criteria for Aerospace Vehicles
60		91707	Self-Adaptive and Invariant Flight Control Technology
61		91708	Energy Management Concepts
62		91709	Self-Learning Flight Control Systems
63		91710	S _{re} ce Vehicle Attitude Control and
	····		Stabilization Techniques
64		91711	Integrated Flight Control Systems
65		91712	Flight Control Reliability
66		91713	Aerospace Vehicle Flight Control Actuation Techniques
67		91714	Fluidic/Flueric Control Techniques
68		91715	Control Data System Technology
69		91716	Air-Mass Referenced Data Measurement Techniques
70		91717	Vehicle Attitude and Wate Sensing Techniques
71 72		91718	Exo-Atmosphere Sensing Techniques
72		91719	Transducers for Veh: > Controls in Severe Environmental Com 1005
73		91720	Propellant and Propulsion Energy Management
			Technology
74		91721	Vector Thrust and Thrust Related Parameter
			Mea urement Technology
75		91/22	Propellant Data Measurement Technology
16		91723	Propulsion Performance Assessment and Prediction
11		91724	Radiation Registant Design Techniques
78		91725	Exploitation of Modern Physics Phenomena for
			Control Data Measurement
79		91727	Wind Tunnel Simulation of Gust and Maneuver
			Response and Control
80		91728	Display Mechanization Techniques
81		91729	Improvement of Display Interpretation and Readability
82		91730	Takeoff, Letdown, Approach, & Landing Techniques
			

Project/Task/Subtase Nr. 134702

	CONTRI-		
CODED	BUTTON OF		No.
RDF	TASK TO T O.		
T.O.	NR. (.1 to 1.0)	T.O. NR.	TITLE
FDC (Cont'd)		FLIGHT CONTROL DIVISION
83		91731	V/STOL Aircraft Control Technology
84		91732	Electrical Primary Flight Control System Techniques
85		91/33	Remote Visual Displays
85		91/34	Illumination Techniques
87		91735	Primary Plight Controller Design for Transport
			Aircraft
88		91736	Energy Maneuverobility Display Techniques
99		91737	Gas Injection Techniques for Control of
			Re-entry Vehicles and Interceptors
FDD			VEHICLE DYNAMICS DIVISION
90		93801	Unsteady Aerodynamics
91	_	93802	Thermoelastic Characteristics of Flexible
	.7		Structures
92		93803	Dynamic Aerothe moelastic Problems and
			Criteria
93		93804	Dynamic Load Technology for Aircraft
94		93805	Dynamic Load Technology for Aerospace
			Vehicles
95		93806	Flight Vehicle Vibration Prediction and
			Cont rol
96		93807	Dynamic Measurement and Analysis Technology
97		93808	Flight Vehicle Noise Fredration and Control
YO		23809	Similation of Wigh Intensity Noise and
-			Associated Environments
99		93810	High Intensity Acoustic Testing Techniques
100		93811	Sonic Patigue of Plight Vehicle Struggle
101	.8 W.K. Shilling	93812	Sonic Fatigue Instrumentation Development

Project/Task/Subtask Nr. 134702

COPED RDE T.O. NR.	CONTRI- BUTION OF TASK TO T.O. (,1 to 1.0)	T.O. NR.	TITLE
TDT			ACROSPACE VEHICLE EQUIPMENT DIVISION
102		90401	First-Stage Type Aerodynamic Decelerator,
103		90402	Acrodynamic Decelerator Landing Point Control
104		90403	Heavy Equipment and Personnel Ai, drop Concepts
105		90405	Emergency Crew Escope
, Jo		90406	Personnel Scating of Likestraint Systems
107		90407	Arioupace Vehicle Cr w Stations
108		90408	Environmental Simulation, Protection, and Test
109	.6	90409	Vehicle Atmosphere Control
01:		90410	Aircraft Thermal Control
111		90411	Space Vehicle Thermal Control
112		90412	Cryogenic Cooling
113		90413	Bearings, Bushings, and Special Components (formerly Bearings for Advanced Systems)
114		90414	Alighting Gear System Concepts and Simulation Techniques
115		90417	Aircrew Rescue Capability
116		90418	Personnel Passive Defense Protection

FORMAT III

SYSTEMS PAYOFF LIST**

to 1500°F F long ti	PAYOFF - BPIEFLY STATE (2 TO 3 LINES) IN QUANTITATIVE TERMS, THE SPECIFIC IMPROVEMENT THIS TASK PROVIDES EACH SYSTEM BEYOND THE CURPENT Structural integrity tests for these systems will draw upon
ENTION	PAYOFF - BPIEFLY STATE (2 TO 3 LINES) IN QUANTITATIVE TERMS, THE SPECIFIC IMPROVEMENT THIS TASK PROVIDES EACH SYSTEM BEYOND THE CHRYENT STATE-OF-THE-ART Structural integrity tests for these systems will draw upon
ENTION	PAYOFF - BPIEFLY STATE (2 TO 3 LINES) IN QUANTITATIVE TERMS, THE SPECIFIC IMPROVEMENT THIS TASK PROVIDES EACH SYSTEM BEYOND THE CHRYENT STATE-OF-THE-ART Structural integrity tests for these systems will draw upon
ENTION SX TO	PAYOFF - BPIEFLY STATE (2 TO 3 LINES) IN QUANTITATIVE TERMS, THE SPECIFIC IMPROVEMENT THIS TASK PROVIDES EACH SYSTEM BEYOND THE CURRENT STATE-OF-THE-ART Structural integrity tests for these systems will draw upon
IBUTION SX TO	PAYOFF - BPIEFLY STATE (2 TO 3 LINES) IN QUANTITATIVE TERMS, THE SPECIFIC IMPROVEMENT THIS TASK PROVIDES EACH SYSTEM BEYOND THE CURPENT STATE-OF-THE-ART Structural integrity tests for these systems will draw upon
SX TO	QUANTITATIVE TERMS, THE SPECIFIC IMPROVEMENT THIS TASK PROVIDES EACH SYSTEM BEYOND THE CHRYENT STATE-OF-THE-ART Structural integrity tests for these systems will draw upon
5 1.0)	Structural integrity tests for these systems will draw upon
	the technology of structural response measurement provided by this task. Specially, elevated temperature strain meas- urements and temperature distribution measurements are
	required. The structural integrity program for this system requires reliable, accurate, long term structural response instrument ation being developed under this task. Elevated temperature
	strain measurement and elevated temperature fatigue sensors are required.
	Elevated remperature strain, hear flux, temperature, and
	deflection measurement is assential to the development of the system.
	ion of t instion 10 a

Aug. 67

FORMAT IV

Project/Task/Subtask Nr. 134702

I. Definitions

Limited War - Armed conflict short of general war, exclusive of incidents, involving the overt engagement of the military forces of two or more nations.

Special Air Warfare - Air Force effort in the following:

- a. Counterinsurgency The entire scope of military, paramilitary, political economic, psychological and divid actions taken by or in conjunction with the government of a nation to defeat insurgency.
- b. Unconventional Warfare Includes the three interrelated fields of guerilia warfare, evasion and escape, and subversion against hostile states. Unconventional warfare operations are conducted within enemy or enemy-controlled territory by predominantly indigenous personnel, usually supported and directed in varying degrees by an external source.

II. Evaluation Scale

Using the above scale and definitions, evaluate the contribution this task/subtask has toward (I) Limited War (LW) and (II) Special Air Warfore (SW). Also, if I or II apply, indicate with an XX which of the 3 other categories (III Interdiction (IN), IV Close Support (CS) and/or V Logistics (LG) are applicable.

Contribution

I. Limited War (LW) .3

II. Special Air Warfare .3

III. Interdiction (Li) xx

IV. Close Support (CS) xx

Logistics (LG) xx

Security Classification

	NTROL DATA - R&D ig annotation must be intered when the overell report in Classified.
1. ORIGINATING ACTION V. Corporate author	28 REPORT SEC ROY CLASSE CATUS
Deputy For Engineering	Unclassified
Aeronautical Systems Division	2 h - G HOLD
Wright-Patterson Air Force Base, Ohio	
3 REPORT TITLE	
RESEARCH AND DEVELOPMENT EFF A Management Tool To Allocate the Budg	ECTIVENESS PROGRAM 1969 (RDE 69) get of a Research Organization
4 DESCRIPTIVE NOTES (Type of report and inclusive dates)	
5 AUTHOR(5):Coatname firstname initial)	
Robert R. Jurick James F. Bittle, II	
6 REPORT DATE	7a TOTAL NO OF PAGES 75 NO OF REFS
July 1968	141
B. DWIHACTOR GHANT NO	98 ORIGINATORIS REPORT NUMBER S
) PRO ECTING	ASD-TR-68-23
	9 b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)
đ	
O A - A ILLABILITY LIMITA FION NOTICES	
This document has been approved for pubunlimited.	olic release and sale; its distribution is
11 SUPPLEMENTARY NOTES	12 SPONSORING MILITARY ACTIVITY
	Deputy For Engineering
	Aeronautical Systems Division
	Wright-Patterson AFB, Ohio
18 ABSTRACT	
locate the budget of a research organization of the Air Force Flight Dynamics Laborator but instructions are included to enable the particle to maximize the total value achieved for a gramma of 250 research tasks may be continuation for up to five years. It generate	

UNCLASSIFIED

Security Classification

14.	KEY WORDS	LINK A		LINK B		LINK C	
		ROLE	WT	ROLE	wT	MOLE	WT
	Optimal Resource Allocation For Research Tasks			i			
]	Budgetary Constraint						
	Research Task Objective Coefficient						
]							
						•	

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal withor is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 76. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- (1) "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSO ING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.